Preliminary Design of JML:

A Behavioral Interface Specification Language for Java

by Gary T. Leavens, Albert L. Baker, and Clyde Ruby

TR #98-06-rev29
June 1998, revised July, November 1998,
January, April, June, July, August, December 1999,
February, May, July, December 2000,
February, April, May, August 2001,

June, August, October, December 2002,
April, May, September, November 2003,
June, November, December 2004,
February, April, July 2005,

January 2006

Keywords: Behavioral interface specification, Java, JML, Eiffel, Larch, model-based speci-
fication, assertion, precondition, postcondition, frame.

2000 CR Categories: D.2.1 [Software Engineering] Requirements/Specifications — lan-
guages, tools, theory, Larch, Eiffel, JML, ESC/Java; D.2.4 [Software Engineering] Soft-
ware/Program Verification — assertion checkers, class invariants, formal methods, pro-
gramming by contract; D.2.7 [Software Engineering] Distribution and Maintenance — doc-
umentation; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying and Reason-
ing about Programs — assertions, invariants, logics of programs, pre- and post-conditions,
specification techniques.

Appears as ACM SIGSOF'T Software Engineering Notes, 31(3):1-38, March 2006.
Copyright (©) 1998-2006 lowa State University

This document is part of JML and is distributed under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2, or (at your
option) any later version.

Department of Computer Science, lowa State University
226 Atanasoff Hall
Ames, Towa 50011-1041, USA

Table of Contents

1 Introduction..................., 1
1.1 Behavioral Interface Specification............................... 1
1.2 Lightweight Specifications............ i i 5)
1.3 GOoals ..o 6
1.4 TOOl SUPPOT. ..\ttt 8

1.4.1 Type Checking Specifications..................... ... 9
1.4.2 Generating HTML Documentation......................... 9
1.4.3 Run Time Assertion Checking............................ 10
1.4.4 Unit Testing with JML........ i . 10
1.5 Outlineooon i e 11

2 Class and Interface Specifications............ 12

2.1 Abstract Modelso 12
2.1.1 Model Fields......ocooii 13
2.1.2 Invariants..........oo 13
2.1.3 Method Specifications..............cccoiiiiii .. 13

2.1.3.1 The Assignable Clause...............coiiiiiiiii... 14
2.1.3.2 OldValues ... 16
2.1.3.3 Reference Semantics.............. ..o 16
2.1.3.4 Correct Implementation 16
2.1.4 Models and Lightweight Specifications.................... 17
2.2 Data GroUPSttt et e 19
2.2.1 Specification of BoundedThing 19
2.2.1.1 Model Fields in Interfaces 20
2.2.1.2 Invariants and History Constraint.................... 20
2.2.1.3 Details of the Method Specifications 21
2.2.1.4 Adding to Method Specifications 21
2.2.1.5 Specifying Exceptional Behavior..................... 21
2.2.2 Specification of BoundedStackInterface 22
2.2.2.1 Data Groups and Represents Clauses 24
2.2.2.2 Redundant Specification............................. 25
2.2.2.3 Multiple Specification Cases 26
2.2.2.4 Pitfalls in Specifying Exceptions..................... 27
2.2.2.5 Redundant Ensures Clauses 29

2.3 Types For Modeling. ... 29
231 Purity ..o 29
2.3.2 MONEY o oe it e 31

2.3.2.1 Redundant Examples............. ...t 33
2.3.2.2 JMLType and Informal Predicates................... 34
2.3.3 MoneyComparable and MoneyOps........................ 36
234 MoneyAC 39
2.3.5 MoneyComparableAC i 40

2.3.6 USMONEY . .. vvtt et 41

2.4 Use of Pure Classesoviieii i 42
2.5 Composition for Container Classescoovveo.... 44
2.5.1 NodeType. ..oooviiiiii 44

2.5.2 ArcType . 45

2.5.3 DAGIADN .« oot et 46

2.6 Behavioral Subtyping ... 49

3 Extensions to Java Expressions 55
3.1 Extensions to Java Expressions for Predicates 55
3.2 Extensions to Java Expressions for Store-Refs 59

4 Conclusions.................... 60
Appendix A Specification Case Defaults...... 62
Bibliography 65
Example Index 74

Concept Index................. i 75

ii

Chapter 1: Introduction 1

1 Introduction

Abstract

JML is a behavioral interface specification language tailored to Java(TM). Be-
sides pre- and postconditions, it also allows assertions to be intermixed with
Java code; these aid verification and debugging. JML is designed to be used
by working software engineers; to do this it follows Eiffel in using Java expres-
sions in assertions. JML combines this idea from FEiffel with the model-based
approach to specifications, typified by VDM and Larch, which results in greater
expressiveness. Other expressiveness advantages over Eiffel include quantifiers,
specification-only variables, and frame conditions.

This paper discusses the goals of JML, the overall approach, and describes the
basic features of the language through examples. It is intended for readers who
have some familiarity with both Java and behavioral specification using pre-
and postconditions.

JML stands for “Java Modeling Language” [Leavens-Baker-Ruby99]. JML is a behavioral
interface specification language (BISL) [Wing87] designed to specify Java [Arnold-Gosling-
Holmes00] [Gosling-etal00] modules. Java modules are classes and interfaces.

The main goal of our research on JML is to better understand how to make BISLs (and
BISL tools) that are practical and effective for production software environments. In order
to understand this goal, and the more detailed discussion of our goals for JML, it helps
to define more precisely what a behavioral interface specification is. After doing this, we
return to describing the goals of JML, and then give a brief overview of the tool support
for JML and an outline of the rest of the paper.

1.1 Behavioral Interface Specification
As a BISL, JML describes two important aspects of a Java module:

e its interface, which consists of the names and static information found in Java decla-
rations, and

e its behavior, which tells how the module acts when used.

BISLs are inherently language-specific [Wing87], because they describe interface details
for clients written in a specific programming language, For example, a BISL tailored to
C++, such as Larch/C++ [Leavens97c|, describes how to use a module in a C++ program. A
Larch/C++ specification cannot be implemented correctly in Java, and a JML specification
cannot be correctly implemented in C++ (except for methods that are specified as native
code).

JML specifications can either be written in separate files or as annotations in Java pro-
gram files. To a Java compiler such annotations are comments that are ignored [Luckham-
vonHenke85] [Luckham-etal87] [Rosenblum95] [Tan94] [Tan95]. This allows JML specifi-
cations, such as the specification below, to be embedded in Java program files. Consider
the following simple example of a behavioral interface specification in JML, written as
annotations in a Java program file, ‘IntMathOps. java’.

Chapter 1: Introduction 2

public class IntMathOps { // 1
/] 2

/*@ public normal_behavior // 3

@ requires y >= 0; /] 4

@ assignable \nothing; // 5

@ ensures 0 <= \result // 6

@ && \result * \result <=y /] 7

@ && ((0 <= (\result + 1) * (\result + 1)) // 8

@ ==> y < (\result + 1) * (\result + 1)); // 9

@x/ //10
public static int isqrt(int y) //11

{ //12
return (int) Math.sqrt(y); //13

} //14

} //15

The specification above describes a Java class, IntMathOps that contains one static
method (function member) named isqrt. The single-line comments to the far right (which
start with //) give the line numbers in this specification; they are ignored by both Java and
JML. Comments with an immediately following at-sign, //@, or, as on lines 3-10, C-style
comments starting with /*@, are annotations. Annotations are treated as comments by a
Java compiler, but JML processes the text of an annotation. The text of an annotation
is either the remainder of a line following //@ or the characters between the annotation
markers /*@ and @+/. In the second form, at-signs (@) at the beginning of lines are ignored;
they can be used to help the reader see the extent of an annotation.

In the above specification, interface information is declared in lines 1 and 11. Line 1
declares a class named IntMathOps, and line 11 declares a method named isqrt. Note that
all of Java’s declaration syntax is allowed in JML, including, on lines 1 and 11, that the
names declared are public, that the method is static (line 11), that its return type is int
(line 11), and that it takes one int argument.

Such interface declarations must be found in a Java module that correctly implements
this specification. This is automatically the case in the file ‘IntMathOps. java’ shown
above, since that file also contains the implementation. In fact, when Java annotations are
embedded in ‘. java’ files, the interface specification is the actual Java source code.

To be correct, an implementation must have both the specified interface and the specified
behavior. In the above specification, the behavioral information is specified in the anno-
tation text on lines 3-10.! The keywords public normal_behavior are used to say that
the specification is intended for callers (hence “public”), and that when the precondition
is satisfied a call must return normally, without throwing an exception (hence “normal”).
In such a public specification, only names with public visibility may be used.? On line

' In JML method specifications must be placed either before the method’s header, as shown above, or

between the method’s header and its body. In this document, we always place the specification before
the method header. This convention is followed by many Java tools, in particular by Javadoc; It has the
advantage of working in all cases, even when the method has no body.

2 Ina protected specification, both public and protected identifiers can be used. In a specification with
default (i.e., no) visibility specified, which corresponds to Java’s default visibility, public and protected

Chapter 1: Introduction 3

4 is a precondition, which follows the keyword requires.® On line 5 is frame condition,
which says that this method, when called, does not assign to any locations. On lines 6-9
is a postcondition, which follows the keyword ensures.* The precondition says what must
be true about the arguments (and other parts of the state); if the precondition is true,
then the method must terminate normally in a state that satisfies the postcondition. This
is a contract between the caller of the method and the implementor [Hoare69] [Jones90]
[Jonkers91] [Guttag-Horning93] [Meyer92a] [Meyer97] [Morgan94]. The caller is obligated
to make the precondition true, and gets the benefit of having the postcondition then be
satisfied. The implementor gets the benefit of being able to assume the precondition, and
is obligated to make the postcondition true in that case.

In general, pre- and postconditions in JML are written using an extended form of Java
expressions. In this case, the only extension visible is the keyword \result, which is used
in the postcondition to denote the value returned by the method. The type of \result
is the return type of the method; for example, the type of \result in isqrt is int. The
postcondition says that the result is an integer approximation to the square root of y. The
first conjunct on line 6, 0 <= \result say that the result is non-negative. The second and
third conjuncts state that the result is an integer approximation to the square root of the
argument y. The second conjunct, on line 7, says that the result squared is no larger than
the argument, y. The third conjunct, on lines 8-9, is an implication; it has two expressions
connected by ==>, which means implication in JML. This implication says that if the result
plus one squared is non-negative, then the result plus one squared is strictly larger than
y.5 Note that the behavioral specification does not give an algorithm for finding the square
root.

Method specifications may also be written in Java’s documentation comments. The
following is an example. The part that JML sees is enclosed within the HTML “tags”
<jml> and </jm1>.° As in this example, one can use surrounding tags <pre> and </pre>
to tell javadoc to ignore what JML sees, and to leave the formatting of it alone. The <pre>
and </pre> tags are not required by JML tools (including jmldoc, which does a better job
of formatting specifications than does javadoc).

identifiers can be used, as well as identifiers from the same package with default visibility. A private
specification can use any identifiers that are available. The privacy level of a method specification
cannot allow more access than the method being specified. Thus a public method may have a private
specification, but a private method may not have a public specification.

The keyword pre can also be used as a synonym for requires.

The keyword post can also be used as a synonym for ensures.

The result plus one squared will become negative if the result is larger than 46340, due to integer
overflow. Patrice Chalin pointed out that in an earlier version of this specification there were overflow
problems [Chalin02]. In Java integer arithmetic, one plus the maximum integer is the minimum integer.
This specification deals with such problems by limiting the result to be a positive integer and by the
implication on lines 8-9. See the specification of IntMathOps2 below for another way to deal with these
problems.

Since HTML tags are not case sensitive, in this one place JML is also not case sensitive. That is, the
syntax also permits the tags <JML>, </JML>. For compatibility with ESC/Java, JML also supports the
tags <esc>, </esc>, <ESC>, and </ESC>.

Chapter 1: Introduction 4

public class IntMathOps4 {

/** Integer square root function.
* Q@param y the number to take the root of
* Qreturn an integer approximating
* the positive square root of y
* <pre><jml>
* public normal_behavior
* requires y >= 0;
* assignable \nothing;
* ensures 0 <= \result
* && \result * \result <=y
* && ((0 <= (\result + 1) * (\result + 1))
* ==> y < (\result + 1) * (\result + 1));
* </jml></pre>
*% /
public static int isqrt(int y)
{
return (int) Math.sqrt(y);
b
b

Because we expect most of our users to write specifications in Java code files, most of
our examples will be given as annotations in ‘. java’ files as in the specifications above.
However, it is possible to use JML to write documentation in separate, non-Java files,
such as the file ‘IntMathOps2. jml-refined’ below. Since these files are not Java program
files, JML requires the user to omit the code for concrete methods in such a file (except
that code for “model” methods can be present, see Section 2.3.1 [Purity], page 29). The
specification below shows how this is done, using a semicolon (;), as in a Java abstract
method declaration.

//@ model import org.jmlspecs.models.*;

public /*+@ spec_bigint_math @+*/ class IntMathOps2 {

/*@ public normal_behavior
@ requires y >= 0;

@ assignable \nothing;

@ ensures -y <= \result && \result <= y;
@ ensures \result * \result <= y;

@ ensures y < (Math.abs(\result) + 1)

Q * (Math.abs(\result) + 1);
Qx/

public static int isqrt(int y);
¥

Chapter 1: Introduction 5)

Besides files with suffixes of ‘. jml-refined’ or ‘. jml’, JML also works with files with
the suffixes ‘.spec’ and ‘.spec-refined’. All these files use Java’s syntax, and one must
use annotation markers just as in a ‘. java’ file. However, since these kinds of files files are
not Java files, in such a file one must also omit the code for concrete, non-model methods.

The specification of IntMathOps2 below is written in spec_bigint_math mode
[Chalin04]. This means that integer mathematics inside the specifications in the class
IntMathOps2 are done in infinite precision arithmetic, instead of the usual Java arithmetic.
This leads to a simpler specification, especially in the ensures clause.”

The above specification also demonstrates that ensures clauses can be repeated in a
specification. In IntMathOps2’s specification of isqrt, there are three ensures clauses; all
of them must be satisfied. Thus the meaning is the same as the conjunction of all of the
postconditions specified in the individual ensures clauses. This specification is also more
underspecified than the specifications given previously, as it allows negative numbers to be
returned as results.

The above specification would be implemented in the file ‘IntMathOps2. java’, which is
shown below. This file contains a refine clause, which tells the reader of the ‘. java’ file
what is being refined and the file in which to find its specification.

//@ refine "IntMathOps2.jml-refined";
//@ model import org.jmlspecs.models.x*;
public class IntMathOps2 {

public static int isqrt(int y)
{
return (int) Math.sqrt(y);
}
}

To summarize, a behavioral interface specification describes both the interface details of a
module, and its behavior. The interface details are written in the syntax of the programming
language; thus JML uses the Java declaration syntax. The behavioral specification uses pre-
and postconditions.

1.2 Lightweight Specifications

Although we find it best to illustrate JML’s features in this paper using specifications
that are detailed and complete, one can use JML to write less detailed specifications. In
particular, one can use JML to write “lightweight” specifications (as in ESC/Java). The
syntax of JML allows one to write specifications that consist of individual clauses, so that
one can say just what is desired. More precisely, a lightweight specification is one that
does not use a behavior keyword (like normal_behavior). By way of contrast, we call a
specification a heavyweight specification if it uses one of the behavior keywords.

7 Because the current ESC/Java2 tool does not understand spec_bigint_math mode, the specification
uses uses annotation markers /*+@ and @+*/. These markers are understood by the ISU JML tools, but
are considered to be comments by ESC/Java2.

Chapter 1: Introduction 6

For example, one might wish to specify just that isqrt should be called only on positive
arguments, but not want to be bothered with saying anything formal about the locations
that can be assigned to by the method or about the result. This could be done as shown
below. Notice that the only specification given below is a single requires clause. Since the
specification of isqrt has no behavior keyword, it is a lightweight specification.

public class IntMathOps3 {

//@ requires y >= 0;
public static int isqrt(int y)
{
return (int) Math.sqrt(y);
}
}

What is the access restriction, or privacy level, of such a lightweight specification? The
syntax for lightweight specifications does not have a place to specify the privacy level, so
JML assumes that such a lightweight specification has the same level of visibility as the
method itself. (Thus, the specification below is implicitly public.) What about the omitted
parts of the specification, such as the ensures clause? JML assumes nothing about these.
In the example below when the precondition is met, an implementation might either signal
an exception or terminate normally, so this specification technically allows exceptions to be
thrown. However, the gain in brevity often outweighs the need for this level of precision.

JML has a semantics that allows most clauses to be sensibly omitted from a specification.
When the requires clause is omitted, for example, it means that no requirements are placed
on the caller. When the assignable clause is omitted, it means that nothing is promised
about what locations may not be assigned to by the method; that is, the method may
assign to all locations that it can otherwise legally assign to. When the ensures clause is
omitted, it means that nothing is promised about the state resulting from a method call.
See Appendix A [Specification Case Defaults], page 62, for the default meanings of various
other clauses.

1.3 Goals

As mentioned above, the main goal of our research is to better understand how to develop
BISLs (and BISL tools) that are practical and effective. We are concerned with both
technical requirements and with other factors such as training and documentation, although
in the rest of this paper we will only be concerned with technical requirements for the BISL
itself. The practicality and effectiveness of JML will be judged by how well it can document
reusable class libraries, frameworks, and Application Programming Interfaces (APIs).

We believe that to meet the overall goal of practical and effective behavioral interface
specification, JML must meet the following subsidiary goals.

e JML must be able to document the interfaces and behavior of existing software, re-
gardless of the analysis and design methods used to create it.

If JML were limited to only handling certain Java features, certain kinds of software, or
software designed according to certain analysis and design methods, then some APIs
would not be amenable to documentation using JML. This would mean that some

Chapter 1: Introduction 7

existing software could not be documented using JML. Since the effort put into writing
such documentation will have a proportionally larger payoff for software that is more
widely reused, it is important to be able to document existing software components.

(However, it should be noted that we make some exceptions to this goal. One is that
JML requires that all subtypes be behavioral subtypes [Dhara-Leavens96] [Leavens97c]
[Wing87] of their supertypes. This is done because otherwise one cannot reason mod-
ularly about programs that use subtyping and dynamic dispatch. Another is that we
specify Object’s method equals as a pure method, which prohibits even benevolent
side effects in any equals method that takes an Object as an argument. This is done
to permit purity checking for collection classes that contain objects as members and
use equals to compare them, as in the collection types found in java.util.)

e The notation used in JML should be readily understandable by Java programmers,
including those with only standard mathematical training.

A preliminary study by Finney [Finney96] indicates that graphic mathematical nota-
tions, such as those found in Z [Hayes93] [Spivey92] [Woodcock-Davies96] may make
such specifications hard to read, even for programmers trained in the notation. This
accords with our experience in teaching formal specification notations to programmers.
Hence, our strategy for meeting this goal has been to shun most special-purpose math-
ematical notations in favor of Java’s own expression syntax.

e The language must be capable of being given a rigorous, formal semantics, and must
also be amenable to tool support.

This goal also helps ensure that the specification language does not suffer from logical
problems, which would make it less useful for static analysis, prototyping, and testing
tools.

We also have in mind a long range goal of a specification compiler, that would produce
prototypes from specifications that happen to be constructive [Wahls-Leavens-Baker(00].

Our partners at Compaq SRC and the University of Nijmegen have other goals in mind.
At Compaq SRC, the goal is to make static analysis tools for Java programs that can help
detect bugs. At the University of Nijmegen, the goal is to be able to do full program
verification on Java programs.

As a general strategy for achieving these goals, we have tried to blend the Eiffel
[Meyer92a] [Meyer92b] [Meyer97], Larch [Wing87] [Wing90a] [Guttag-Horning93| [Leav-
ensLarchFAQ), and refinement calculus [Back88] [Back-vonWright98] [Morgan-Vickers94]
[Morgan94| approaches to specification. From Eiffel we have taken the idea that assertions
can be written in a language that is based on Java expressions. We also adapt the “old”
notation from Eiffel, which appears in JML as \old, instead of the Larch-style annotation
of names with state functions. However, Eiffel specifications, as written by Meyer, are
typically not as detailed as model-based specifications written, for example, in Larch
BISLs or in VDM-SL [Fitzgerald-Larsen98] [ISO96] [Jones90]. Hence, we have combined
these approaches, by using syntactic ideas from Kiffel and semantic ideas from model-based
specification languages.

JML also has some other differences from Eiffel (and its cousins Sather and Sather-K).
The most important is the concept of specification-only declarations. These declarations
allow more abstract and exact specifications of behavior than is typically done in Eiffel;
they allow one to write specifications that are similar to the spirit of VDM or Larch BISLs.

Chapter 1: Introduction 8

A major difference is that we have extended the syntax of Java expressions with quantifiers
and other constructs that are needed for logical expressiveness, but which are not always
executable. Finally, we ban side-effects and other problematic features of code in assertions.

On the other hand, our experience with Larch/C++ has taught us to adapt the model-
based approach in two ways, with the aim of making it more practical and easy to learn.
The first adaptation is again the use of specification-only model variables. An object will
thus have (in general) several such model fields, which are used only for the purpose of
describing, abstractly, the values of objects. This simplifies the use of JML, as compared
with most Larch BISLs, since specifiers (and their readers) hardly ever need to know about
algebraic-style specification. It also makes designing a model for a Java class or interface
similar, in some respects, to designing an implementation data structure in Java. We hope
that this similarity will make the specification language easier to understand. (This kind of
model also has some technical advantages that will be described below.)

The second adaptation is hiding the details of mathematical modeling behind a facade
of Java classes. In the Larch approach to behavioral interface specification [Wing87], the
mathematical notation used in assertions is presented directly to the specifier. This allows
the same mathematical notation to be used in many different specification languages. How-
ever, it also means that the user of such a specification language has to learn a notation for
assertions that is different than their programming language’s notation for expressions. In
JML we use a compromise approach, hiding these details behind Java classes. These classes
have objects with many “pure” methods, in the sense that they do not use side-effects (at
least not in any observable way). Such classes are intended to present the underlying math-
ematical concepts using Java syntax. Besides insulating the user of JML from the details
of the mathematical notation, this compromise approach also insulates the design of JML
from the details of the mathematical logic used for theorem proving.

We have generally taken features wholesale from the refinement calculus [Back88| [Back-
vonWright98] [Morgan-Vickers94] [Morgan94]. Our adaptation of it consists in blending it
with the idea of interface specification and adding features for object-oriented programming.
We are using the adaptation of the refinement calculus by Biichi and Weck [Buechi-Weck00],
which helps in specifying callbacks. However, since the refinement calculus is mostly needed
for advanced specifications, in the remainder of this paper we do not discuss the JML
features related to refinement, such as model programs.

1.4 Tool Support

Our partners at Compaq SRC have built a tool, ESC/Java, that does static analysis for
Java programs [Leino-etal00]. ESC/Java uses a subset of the JML specification syntax, to
help detect bugs in Java code. At the University of Nijmegen the LOOP tool [Huisman01]
[Jacobs-etal98] is being adapted to use JML as its input language. This tool would gen-
erate verification conditions that could be checked using a theorem prover such as PVS or
Isabelle/HOL. At the Massachusetts Institute of Technology (MIT), the Daikon invariant
detector project [Ernst-etal01] is using a subset of JML to record invariants detected by
runs of a program. Recent work uses ESC/Java to validate the invariants that are found.

In the rest of the section we concentrate on the tool support found in the JML release
from Iowa State. lowa State’s JML release has tool support for: static type checking of
specifications, run-time assertion checking, generation of HTML pages, and generation of

Chapter 1: Introduction 9

unit testing harnesses. Use a web browser on the ‘JML.html’ file in the lowa State JML
release to access more detailed documentation on these tools.

1.4.1 Type Checking Specifications

Details on how to run the JML checker can be found in its manual page, which is part of
the JML release. Here we only indicate the most basic uses of the checker. Running the
checker with filenames as arguments will perform type checking on all the specifications
contained in the given files. For example, one could check the specifications in the file
‘UnboundedStack. java’ by executing the following command.

jml UnboundedStack. java

One can also pass several files to the checker. For example, the following shows a handy
pattern to catch all of the JML files in the current directory.

jml *.*xj* *. kxspec*

One can also pass directories to the JML checker, for example the following will check
all the specifications in the current directory.

jml .
By default, the checker does not recurse into subdirectories, but this can be changed

by using the -R option. For example, the following checks specifications in the current
directory and all subdirectories.
jml -R .

To allow specifications to be split into several files and to allow documentation of code
without changing existing files, the checker recognizes several filename suffixes. The checker
recognizes several filename suffixes. The following are considered to be “active” suffixes:
‘.refines-java’, ‘.refines-spec’, ‘.refines-jml’, ‘. java’, ‘.spec’, and ‘. jml’; There
are also three “passive” suffixes: ‘. java-refined’, ‘.spec-refined’, and ‘. jml-refined’.
Files with passive suffixes can be used in refinements (see Section 1.1 [Behavioral Interface
Specification], page 1) but should not normally be passed explicitly to the checker on its
command line. Graphical user interface tools for JML should, by default, only present
the active suffixes for selection. Among files in a directory with the same prefix, but with
different active suffixes, the one whose suffix appears first in the list of active suffixes above
should be considered primary by such a tool.

Files with different suffixes should be connected to each other using refines clauses.
We give several examples in the remainder of this paper.

1.4.2 Generating HTML Documentation

To generate HI'ML documentation that can be browsed on the web, one uses the jmldoc
tool.® This tool is a replacement for javadoc that understands JML specifications. In
addition to generating web pages for JML files and for JML annotated Java files, jmldoc
also generates the indexes and other HTML files that surround these and provide access, in
the same way that javadoc does.

For example, here is how we use jmldoc to generate the HTML pages for the MultiJava
project.

8 The jmldoc tool is generously provided by David Cok; thanks David!.

Chapter 1: Introduction 10

rm -fr $HOME/MJ/javadocs

jmldoc -Q -private -d $HOME/MJ/javadocs \
-link file:/cygwin/usr/local/jdkl.4/docs/api \
-link file:/cygwin/usr/local/antlr/javadocs \
--sourcepath $HOME/MJ \
org.multijava.dis org.multijava.javadoc org.multijava.mjc \
org.multijava.mjdoc org.multijava.util org.multijava.util.backend \
org.multijava.util.classfile org.multijava.util.compiler \
org.multijava.util.jperf org.multijava.util.lexgen \
org.multijava.util.msggen org.multijava.util.optgen \
org.multijava.util.optimize org.multijava.util.testing

The options used in the above invocation of jmldoc make jmldoc be quiet (-Q), document
all members (including private ones) of classes and interfaces (-private), write the HTML
files relative to ‘$HOME/MJ/ javadocs’ (-d), link to existing HTML files for the JDK and for
ANTLR (-1link), and find listed packages relative to ‘$HOME/MJ’ (--sourcepath). More
details on running jmldoc are available from its manual page, which is part of the JML
release.

1.4.3 Run Time Assertion Checking

The JML runtime assertion checking compiler is called jmlc. It type checks assertions (so
there is no need to run jml separately), and then generates a class file with the executable
parts of the specified assertions, invariants, preconditions, and postconditions (and other
JML constructs) checked at run-time. Its basic usage is similar to a Java compiler, as shown
in the following example.

jmlc TestUnboundedStack.java UnboundedStack. java
This will produce output telling what the compiler is doing, as well as class files
‘TestUnboundedStack.class’ and ‘UnboundedStack.class’.

To run or test a program compiled with jmlc, you should use the script jmlrac. The
jmlrac script runs the resulting code with a CLASSPATH that includes various JAR files
containing code needed for run-time assertion checking. The following is an example.

jmlrac org.jmlspecs.samples.stacks.TestUnboundedStack
Using the jmlrac script is necessary. If you do not use jmlrac to run the program, you

will get errors, since the code that jmlc compiles expects various runtime library classes to
be available.

More details on invoking jmlc and jmlrac are available from their manual pages, which
are available in the JML release. See also the ‘README.html’ file in the JML release for
more details and troubleshooting tips. Details on the implementation of jmlc are found in
a paper by Cheon and Leavens [Cheon-Leavens02b].

1.4.4 Unit Testing with JML

The run time assertion checker is also integrated with a tool, jmlunit that can write
out a JUnit [Beck-Gamma98| test oracle class for given Java files. For example, to
generate the classes UnboundedStack_JML_Test and UnboundedStack_JML_TestData from
UnboundedStack, one would execute the following.

jmlunit UnboundedStack. java

Chapter 1: Introduction 11

The file ‘UnboundedStack_JML_Test. java’ will then contain code for an abstract class
to drive the tests. This class uses the runtime assertion checker to decide test success or
failure. (Tests are only as good as the quality of the specifications; hence the specifications
must be reasonably complete to permit reasonably complete testing.)

The file ‘UnboundedStack_JML_TestData. java' will contain code for the superclass of
UnboundedStack_JML_Test that can be used to fill in test data for such testing. You need
to fill in the test data in the code for this subclass, as described in the comments. The
file ‘UnboundedStack_JML_TestData.java’ is produced automatically the first time you
run jmlunit as described above. However, subsequent runs of jmlunit never overwrite or
change an ‘_JML_TestData.java’ file such as this if it exists. Hence it is safe to edit the
file to add test data (and even additional test methods if you wish).

To run the test use the script jml-junit, as in the following example.
jml-junit org.jmlspecs.samples.stacks.UnboundedStack_JML_TestData

More details on invoking these tools can be found in their manual pages which ship with
the JML release. More discussion on this integration of JML and JUnit are explained in
the ECOOP 2002 paper by Cheon and Leavens [Cheon-Leavens02].

JML also provides a tool, jtest, that combines both jmlc and jmlunit. The jtest tool
both compiles a class with run-time assertion checks enabled using jmlc, and also generates
the test oracle and test data classes, using jmlunit.

1.5 Outline

In the next sections we describe more about JML and its semantics. See Chapter 2 [Class
and Interface Specifications|, page 12, for examples that show how Java classes and interfaces
are specified; this section also briefly describes the semantics of subtyping and refinement.
See Chapter 3 [Extensions to Java Expressions], page 55, for a description of the expressions
that can be used in specifications. See Chapter 4 [Conclusions|, page 60, for conclusions
from our preliminary design effort. See the JML Reference Manual [Leavens-etal-JMLRef]
for details on the syntax of JML.

Chapter 2: Class and Interface Specifications 12

2 Class and Interface Specifications

In this section we give some examples of JML class specifications that illustrate the basic
features of JML.

2.1 Abstract Models

A simple example of an abstract class specification is the ever-popular UnboundedStack
type, which is presented below. It would appear in a file named ‘UnboundedStack. java’.

package org.jmlspecs.samples.stacks;
//@ model import org.jmlspecs.models.*;
public abstract class UnboundedStack {

/*@ public model JMLObjectSequence theStack;
@ public initially theStack != null
@ && theStack.isEmpty();
@x/

//@ public invariant theStack != null;

/*@ public normal_behavior
@ requires !theStack.isEmpty(Q);
@ assignable theStack;
@ ensures theStack.equals(
Q \old(theStack.trailer()));
Qx/
public abstract void pop();

/*@ public normal_behavior
@ assignable theStack;
@ ensures theStack.equals(
@ \old(theStack.insertFront(x)));
x/
public abstract void push(Object x);

/*@ public normal_behavior
@ requires !theStack.isEmpty();
@ assignable \nothing;
@ ensures \result == theStack.first();
@x/
public /*@ pure @*/ abstract Object top();
}

The above specification contains the declaration of a model field, an invariant, and some
method specifications. These are described below.

Chapter 2: Class and Interface Specifications 13

2.1.1 Model Fields

In the fourth non-blank line of ‘UnboundedStack.java’, a model data field, theStack, is
declared. Since it is declared using the JML modifier model, such a field is not part of
the Java implementation, and must appear in an annotation; however, for purposes of the
specification we treat it much like any other Java field (i.e., as a variable location). That
is, we imagine that each instance of the class UnboundedStack has such a field.

The type of the model field theStack is a type designed for mathematical modeling,
JMLObjectSequence. Objects of this type are sequences of objects. This type is provided by
JML in the package org. jmlspecs.models, which is imported in the second non-blank line
of the figure. Note that this import declaration is not part of the Java implementation, since
it is modified by the keyword model. Such model imports must also appear in annotation
comments. In general, any declaration form in Java can have the model modifier, with the
same meaning. That is, a model declaration is only used for specification purposes, and
does not have to appear in an implementation.

At the end of the model field’s declaration above is an initially clause. (Such clauses
are adapted from RESOLVE [Ogden-etal94] and the refinement calculus [Back88] [Back-
vonWright98] [Morgan-Vickers94] [Morgan94|.) Model fields cannot be explicitly initialized
(and thus cannot be final), because there is no storage directly associated with them. How-
ever, one can use an initially clause to describe an abstract initialization for a model
field. Initially clauses can be attached to any field declaration, including non-model fields,
and permit one to constrain the initial values of such fields. Knowing something about the
initial value of the field permits data type induction [Hoare72a] [Wing83] for abstract classes
and interfaces. The initially clause must be true of the field’s starting value. That is,
all reachable objects of the type UnboundedStack must have been created as empty stacks
and subsequently modified using the type’s methods.

2.1.2 Invariants

Following the model field declaration is an invariant. An invariant does not have to hold
during the execution of an object’s methods, but it must hold, for each reachable object in
each publicly visible state; i.e., for each state outside of a public method or constructor’s
execution, and at the beginning and end of each public method’s execution.® The figure’s
invariant just says that the value of theStack should never be null.

2.1.3 Method Specifications

Following the invariant are the specifications of the methods pop, push, and top. We
describe the new aspects of these specifications below.

! In JML invariants also apply to non-public methods as well. The only exception is that a private method
or constructor may be marked with the helper modifier; such methods cannot assume and do not need
to establish the invariant.

Chapter 2: Class and Interface Specifications 14

2.1.3.1 The Assignable Clause

The use of the assignable? clauses in the behavioral specifications of pop and push is in-
teresting (and another difference from Eiffel). These clauses give frame conditions [Borgida-
Mylopoulos-Reiter95]. In JML, the frame condition given by a method’s assignable clause
only permits the method to assign to a location, loc, if:

e Joc is mentioned in the method’s assignable clause,

e Joc is a member of a data group mentioned in the method’s assignable clause (see
Section 2.2 [Data Groups|, page 19),

e Joc was not allocated when the method started execution, or

e [oc is local to the method (i.e., a local variable, including the method’s formal param-
eters).

For example, push’s specification says that it may only assign to theStack (and locations
in theStack’s data group). This allows push to assign to theStack (and the members of
its data group), or to call some other method that makes such an assignment. Furthermore,
push may assign to the formal parameter x itself, even though that location is not listed in
the assignable clause, since x is local to the method. However, push may not assign to
fields not mentioned in the assignable clause; in particular it may not assign to fields of
its formal parameter x,* or call a method that makes such an assignment.

The design of JML is intended to allow tools to statically check the body of a method’s
implementation to determine whether its assignable clause is satisfied. This would be
done by checking each assignment statement in the implementation to see if what is being
assigned to is a location that some assignable clause permits. It is an error to assign to
any other allocated, non-local location. However, to do this, a tool must conservatively
track aliases and changes to objects containing the locations in question. Also, arrays can
only be dynamically checked, in general.* Furthermore, JML will flag as an error a call to
a method that would assign to locations that are not permitted by the calling method’s
assignable clause. It can do this using the assignable clause of the called method.

In JML, a location is modified by a method when it is allocated in both the pre-state of
the method, reachable in the post-state, and has a value that is different in these two states.
The pre-state of a method call is the state just after the method is called and parameters
have been evaluated and passed, but before execution of the method’s body. The post-state
of a method call is the state just before the method returns or throws an exception; in
JML we imagine that \result and information about exception results is recorded in the
post-state.

Since modification only involves objects allocated in the pre-state, allocation of an ob-
ject, using Java’s new operator, does not itself cause any modification. Furthermore, since

2 For historical reasons, one can also use the keyword modifiable as a synonym for assignable. Also,
for compatibility with (older versions of) ESC/Java [Leino-etal00], in JML, one can also use the key-
word modifies as a synonym for assignable. In the literature, the most common keyword for such
a clause is modifies, and what JML calls the “assignable clause” is usually referred to as a “modifies
clause”. However, in JML, “assignable” most closely corresponds to the technical meaning, so we use
that throughout this document. Users of JML may write whichever they prefer, and may mix them if
they please.

3 Assuming that x is not the same object as this!

4 Thanks to Erik Poll for discussions on checking of assignable clauses.

Chapter 2: Class and Interface Specifications 15

the fields of new objects are locations that were not allocated when the method started
execution, they may be assigned to freely.

The reason assignments to local variables are permitted by the assignable clause is that
a JML specification takes the client’s (i.e., the caller’s) point of view. From the client’s
point of view, the local variables in a method are newly-allocated, and thus assignments
to such variables are invisible to the client. Hence, in JML, it is an error to list the
locations corresponding to formal parameters in the assignable clause. However, the
locations corresponding to fields or array elements of such formal parameters can be sensibly
mentioned in the assignable clause. Furthermore, when formal parameters are used in a
postcondition, JML interprets these as meaning the value initially given to the formal in the
pre-state, since assignments to the formals within the method do not matter to the client.

JML’s interpretation of the assignable clause does not permit either temporary side
effects or benevolent side effects. A method with a temporary side effect assigns to a
location, does some work, and then assigns the original value back to that location. In
JML, a method may not have temporary side effects on locations that it is not permitted to
modify [Ruby-Leavens00]. A method has a benevolent side effect if it assigns to a location
in a way that is not observable by clients. In JML, a method may not have benevolent side
effects on locations that it is not permitted to modify [Leino95] [Leino95a].

Because JML’s assignable clauses give permission to assign to locations, it is safe for
clients to assume that only the listed locations (and locations of their data group members)
may have their values modified. Because locations listed in the assignable clause are the
only ones that can be modified, we often speak of what locations a method can “modify,”
instead of the more precise “can assign to.”

What does the assignable clause say about the modification of locations? In particular,
although the “location” for a model field or model variable cannot be directly assigned to
in JML, its value is determined by the concrete fields and variables that it (ultimately)
depends on, specifically the members of its data group. That is, a model field or variable
can be modified by assignments to the concrete members of its data group (see Section 2.2
[Data Groups], page 19). Thus, a method’s assignable clause only permits the method to
modify a location if the location:

e is mentioned in the method’s assignable clause,

e is a member of a data group mentioned in the assignable clause (see Section 2.2 [Data
Groups|, page 19),

e was not allocated when the method started execution, or

e is local to the method.

In the specification of top, the assignable clause says that a call to top that satisfies the
precondition cannot assign to any locations. It does this by using the store-ref “\nothing.”
Unlike some formal specification languages (including Larch BISLs and older versions of
JML), when the assignable clause is omitted in a heavyweight specification, the default
store-ref for the assignable clause is \everything. Thus an omitted assignable clause in
JML means that the method can assign to all locations (that could otherwise be assigned
to by the method). Such an assignable clause plays havoc with formal reasoning, and thus
if one cares about verification, one should give an assignable clause explicitly if the method
is not pure (see Section 2.3.1 [Purity], page 29).

Chapter 2: Class and Interface Specifications 16

2.1.3.2 Old Values

When a method can modify some locations, they may have different values in the pre-state
and post-state of a call. Often the post-condition must refer to the values held in both
of these states. JML uses a notation similar to Eiffel’s to refer to the pre-state value of
a variable. In JML the syntax is \old(E), where F is an expression. (Unlike Eiffel, we
use parentheses following \old to delimit the expression to be evaluated in the pre-state
explicitly. JML also uses backslashes (\\) to mark the keywords it uses in expressions; this
avoids interfering with Java program identifiers, such as “01d”.)

The meaning of \old(FE) is as if E were evaluated in the pre-state and that
value is used in place of \old(F) in the assertion. It follows that, an expression like
\old(myVar) .theStack may not mean what is desired, since only the old value of
myVar is saved; access to the field theStack is done in the post-state. If it is the field,
theStack, not the variable, myVar, that is changing, then probably what is desired is
\old(myVar.theStack). To avoid such problems, it is good practice to have the expression
E in \old(FE) be such that its type is either the type of a primitive value, such as an int,
or a type with immutable objects, such as JMLObjectSequence.

As another example, in pop’s postcondition the expression \old(theStack.trailer())
has type JMLObjectSequence, so it is immutable. The value of theStack.trailer() is
computed in the pre-state of the method.

2.1.3.3 Reference Semantics

Note also that, since JMLObjectSequence is a reference type, one must use equals instead of
== to compare instances of this type for equality of values. For example, in the postcondition
of the pop method, we use equals to compare theStack and \old(theStack.trailer()),
as these may yield different objects. Using == would be a mistake, since it would only
compare them for object identity.

As in Java itself, most types are reference types, and hence many expressions yield
references (i.e., object identities or addresses), as opposed to primitive values. This means
that ==, except when used to compare pure values of primitive types such as boolean or
int, is reference equality. As in Java, to get value equality for reference types one uses the
equals method in assertions. For example, the predicate myString == yourString, is only
true if the objects denoted by myString and yourString are the same object (i.e., if the
names are aliases); to compare their values one must write myString.equals (yourString).

2.1.3.4 Correct Implementation

The specification of push does not have a requires clause. This means that the method
imposes no obligations on the caller. (The meaning of an omitted requires clause is that
the method’s precondition is true, which is satisfied by all states, and hence imposes no
obligations on the caller.) This seems to imply that the implementation must provide a
literally unbounded stack, which is surely impossible. We avoid this problem, by following
Poetzsch-Heffter [Poetzsch-Heffter97] in releasing implementations from their obligations
to fulfill the postcondition when Java runs out of storage. In general, a method specified
with normal_behavior has a correct implementation if, whenever it is called in a state that
satisfies its precondition, either

e the method terminates normally in a state that satisfies its postcondition, having as-
signed to only the locations permitted by its assignable clause, or

Chapter 2: Class and Interface Specifications 17

e Java signals an error, by throwing an exception that inherits from java.lang.Error.

We discuss the specification of methods with exceptions in the next subsection.

2.1.4 Models and Lightweight Specifications

In specifying existing code, one often does not want to introduce new model fields or think
up new names for them. And sometimes, especially for fields with simple, atomic values, the
field name itself is so “natural” that it would be difficult to think up a second good name for
a model field that would be an abstraction of it. Thus JML provides two modifiers, spec_
public and spec_protected that can used to make existing fields public or protected, for
purposes of specification.

For example, consider the (lightweight) specification of the class Point2D below. In this
specification the private fields, x and y are specified as spec_public, which allows them
to be used in the public invariant clause and in the (implicitly public) specifications of the
constructors and methods of Point2D.

package org.jmlspecs.samples.prelimdesign;
//@ model import org.jmlspecs.models.JMLDouble;

public class Point2D
{
private /*@ spec_public @/ double x =
private /*@ spec_public @/ double y

|
o O
o O

[

//@ public invariant !Double.isNaN(x);
//@ public invariant !Double.isNaN(y);
//@ public invariant !Double.isInfinite(x);
//@ public invariant !Double.isInfinite(y);

//@ ensures x == 0.0 && y == 0.0;
public Point2D() { }

/*@ requires !Double.isNaN(xc);

@ requires 'Double.isNaN(yc);
@ requires !'Double.isInfinite(xc);
@ requires !Double.isInfinite(yc);
@ assignable x, y;
@ ensures x == xCc && y == yc;
Qx/

public Point2D(double xc, double yc) {
X = XcC;
y = ¥&;

}

//@ ensures \result == x;

public /*@ pure @*/ double getX() {
return x;

Chapter 2: Class and Interface Specifications 18

}

//@ ensures \result == y;

public /*@ pure @/ double getY() {
return y;

}

/*@ requires !'Double.isNaN(x+dx);
@ requires !Double.isInfinite(x+dx);
@ assignable x;
@ ensures JMLDouble.approximatelyEqualTo(x,

Q \old(x+dx), 1le-10);
ox/

public void moveX(double dx) {
x += dx;

}

/*@ requires !'Double.isNaN(y+dy);
@ requires !Double.isInfinite(y+dy);
@ assignable y;
@ ensures JMLDouble.approximatelyEqualTo(y,

@ \old(y+dy), 1le-10);
x/

public void moveY(double dy) {
y += dy;

}
}

Note that these specifications would be illegal without the use of spec_public, since
JML requires that public specifications only mention publicly-visible names (see Section 1.1
[Behavioral Interface Specification], page 1).

However, spec_public is more than just a way to change the visibility of a name for
specification purposes. When applied to fields it can be considered to be shorthand for the
declaration of a model field with the same name. That is, the declaration of x in Point2D
can be thought of as equivalent to the following declarations, together with a rewrite of the
Java code that uses x to use _x instead (where we assume _x is not used elsewhere).

//@ public model int x;

private int _x; //@ in x;

//@ private represents x <- _x;
So in this way of thinking spec_public is not just an access modifier, but shorthand for
declaration of a model field. This model field declaration is a commitment to readers that
they can understand the specification using these model fields, even if the underlying private
fields are changed, just as if the model field were declared explicitly. The model fields that
are implicit allow such changes to be made without affecting the readers of the specification.

For example, suppose one wanted to change the implementation of Point2D, to use
polar coordinates. To do that while keeping the public specification unchanged, one would
declare the model fields x and y explicitly. One would then declare other fields for the

Chapter 2: Class and Interface Specifications 19

polar and rectangular coordinates (and perhaps additional model fields as well). One would
then also need to give explicit declarations that the new concrete fields are members of
the model fields data groups, and give appropriate represents clauses. (See Section 2.2.2.1
[Data Groups and Represents Clauses|, page 24, for more on data group membership and
represents clauses.) All of this is exactly analogous to what is done implicitly in the the
desugaring described above.

Similar remarks apply to spec_protected. The spec_public and spec_protected
shorthands were borrowed from ESC/Java, but the desugaring described above is novel
with JML.

2.2 Data Groups

In this subsection we present two example specifications. The two example specifications,
BoundedThing and BoundedStackInterface, are used to describe how model (and concrete)
fields can be related to one another, and how dependencies among them affect the meaning
of the assignable clause. Along the way we also demonstrate how to specify methods that
can throw exceptions and other features of JML.

2.2.1 Specification of BoundedThing

The specification in the file ‘BoundedThing. java’, shown below, is an interface specification
with a simple abstract model. In this case, there are two model fields MAX_SIZE and size.

package org.jmlspecs.samples.stacks;
public interface BoundedThing {

//@ public model instance int MAX_SIZE;
//@ public model instance int size;

/*@ public instance invariant MAX_SIZE > 0;
public instance invariant
0 <= size && size <= MAX_SIZE;
public instance constraint
MAX_SIZE == \old(MAX_SIZE);
@x/

/*@ public normal_behavior
ensures \result == MAX_SIZE;
@x/
public /*@ pure @*/ int getSizeLimit();

/*@ public normal_behavior
ensures \result <==> size == 0;
@x/
public /*@ pure @*/ boolean isEmpty();

/*@ public normal_behavior
ensures \result <==> size == MAX_SIZE;

Chapter 2: Class and Interface Specifications 20

ox/
public /*@ pure @*/ boolean isFull();

/*@ also
public behavior
assignable \nothing;
ensures \result instanceof BoundedThing
&& size == ((BoundedThing)\result).size;
signals_only CloneNotSupportedException;
Qx/
public Object clone ()
throws CloneNotSupportedException;
3

After discussing the model fields, we describe the other parts of the specification below.

2.2.1.1 Model Fields in Interfaces

In the specification above, the fields MAX_SIZE and size are both declared using the modifier
instance. Because of the use of the keyword instance, these fields are thus treated
as normal model fields, i.e., as an instance variable in each object that implements this
interface. By default, as in Java, fields are static in interfaces, and so if instance is
omitted, the field declarations would be treated as class variables. The instance keyword
tells the reader that the variable being declared is not static, but has a copy in each instance
of a class that implements this interface.

Java does not allow non-static fields to be declared in interfaces. However, JML allows
non-static model (and ghost) fields in interfaces when one uses instance. The reason for
this extension is that such fields are essential for defining the abstract values and behavior
of the objects being specified.’

In specifications of interfaces that extend or classes that implement this interface, these
model fields are inherited. Thus, every object that has a type that is a subtype of the
BoundedThing interface is thought of, abstractly, as having two fields, MAX_SIZE and size,
both of type int.

2.2.1.2 Invariants and History Constraint

Three pieces of class-level specification come after the abstract model in the above specifi-
cation.

The first two are invariant clauses. Writing several invariant clauses in a specification,
like this is equivalent to writing one invariant clause which is their conjunction. Both of
these invariants are instance invariants, because they use the instance modifier. By default,
in interfaces, invariants and history constraints are static, unless marked with the instance
modifier. Static invariants may only refer to static fields, while instance invariants can refer
to both instance and static fields.

The first invariant in the figure says that in every publicly visible state, every reachable
object that is a BoundedThing must have a positive MAX_SIZE field. The second invariant

5 Furthermore, static model fields must have concrete implementations in the interfaces in which they are
declared, if they are to have any representation at all. See Section 2.2.2.1 [Data Groups and Represents
Clauses], page 24, for more on this subject.

Chapter 2: Class and Interface Specifications 21

says that, in each publicly visible state, every reachable object that is a BoundedThing must
have a size field that is non-negative and less than or equal to MAX_SIZE.

Following the invariants is a history constraint [Liskov-Wing94]. Like the invariants, it
uses the modifier instance, because it refers to instance fields. A history constraint is used
to say how values can change between earlier and later publicly-visible states, such as a
method’s pre-state and its post-state. This prohibits subtype objects from making certain
state changes, even if they implement more methods than are specified in a given class. The
history constraint in the specification above says that the value of MAX_SIZE cannot change,
since in every pre-state and post-state, its value in the post-state, written MAX_SIZE, must
equal its value in the pre-state, written \old (MAX_SIZE).

2.2.1.3 Details of the Method Specifications

Following the history constraint are the interfaces and specifications for four public methods.
Notice that, if desired, the at-signs (@) may be omitted from the left sides of intermediate
lines, as we do in this specification.

The use of == in the method specifications is okay, since in each case, the things being
compared are primitive values, not references. The notation <==> can be read “if and

only if”. It has the same meaning for Boolean values as ==, but has a lower precedence.
Therefore, the expression “\result <==> size == 0” in the postcondition of the isEmpty
method means the same thing as “\result == (size == 0)".

2.2.1.4 Adding to Method Specifications

The specification of the last method of BoundedThing, clone, is interesting. Note that it
begins with the keyword also. This form is intended to tell the reader that the specifica-
tion given is in addition to any specification that might have been given in the superclass
Object, where clone is declared as a protected method. A form like this must be used
whenever a specification is given for a method that overrides a method in a superclass, or
that implements a method from an implemented interface.

2.2.1.5 Specifying Exceptional Behavior

The specification of clone also uses behavior instead of normal_behavior. In a specifi-
cation that starts this way, one can describe not just the case where the execution returns
normally, but also executions where exceptions are thrown. In such a specification, the
conditions under which exceptions can be thrown can be described by the predicate in the
signals clauses,’ and the conditions under which the method may return without throwing
an exception are described by the ensures clause. In this specification, the clone method
may always throw the exception, because it only needs to make the predicate “true” true
to do so. When the method returns normally, it must make the given postcondition true.

In JML, a normal_behavior specification can be thought of as a syntactic sugar for a
behavior specification to which the following clause is added [Raghavan-Leavens05].

signals (java.lang.Exception) false;

This formalizes the idea that a method with a normal_behavior specification may not
throw an exception when the specification’s precondition is satisfied.

6 The keyword “exsures” can also be used in place of signals.

Chapter 2: Class and Interface Specifications 22

JML also has a specification form exceptional_behavior, which can be used to specify
when a method may not return normally. A specification that uses exceptional_behavior
can be thought of as a syntactic sugar for a behavior specification to which the following
clause is added [Raghavan-Leavens05].

ensures false;

This formalizes the idea that a method with an exceptional_behavior specification may
not return normally when the specification’s precondition is satisfied. Thus, when the
precondition of such a specification case holds, some exception must be thrown (unless the
execution encounters an error or is permitted to not return to the caller).

Since, in the specification of clone, we want to allow the implementation to make a
choice between either returning normally or throwing an exception, and we do not wish
to distinguish the preconditions under which each choice must be made, we cannot use
either of the more specialized forms normal_behavior or exceptional_behavior. Thus
the specification of clone demonstrates the somewhat unusual case when the more general
form of a behavior specification is needed.

The specification of clone also illustrates the signals_only clause. The signals_only
clause in the example says that the method may only throw an exception that is a subtype of
CloneNotSupportedException when the exceptional behavior’s precondition is true. This
says the same thing as the following, more verbose, signals clause.

signals (Exception e) e instanceof CloneNotSupportedException;

The signals clause itself only describes what must be true when the exceptions it applies
to are thrown; it does not constrain a method’s behavior with respect to exceptions that
are not subtypes of the exceptions named. For example, a signals clause of the form

signals (CloneNotSupportedException) true;

would only say that a CloneNotSupportedException can always be thrown; it would not
prohibit other exceptions that are not subtypes of CloneNotSupportedException from
being thrown. For example, if clone were specified with such a signals clause, then an
implementation could legally throw a NullPointerException. To prevent such a possibility,
in many cases it is preferable to use a signals_only clause to limit what exceptions may
be thrown.

Finally note that in the specification of clone, the normal postcondition says that the
result will be a BoundedThing and that its size will be the same as the model field size. The
use of the cast in this postcondition is necessary, since the type of \result is Object. (This
also adheres to our goal of using Java syntax and semantics to the extent possible.) Note
also that the conjunct \result instanceof BoundedThing “protects” the next conjunct
[Leavens-Wing97a| since if it is false the meaning of the cast does not matter.

2.2.2 Specification of BoundedStackInterface

The specification in the file ‘BoundedStackInterface.java’ below gives an interface for
bounded stacks that extends the interface for BoundedThing. Note that this specification
can refer to the instance fields MAX_SIZE and size inherited from the BoundedThing inter-
face.

package org.jmlspecs.samples.stacks;
//@ model import org.jmlspecs.models.*;

Chapter 2: Class and Interface Specifications 23

public interface BoundedStackInterface extends BoundedThing {
//@ public initially theStack != null && theStack.isEmptyQ);
/*@ public model instance JMLObjectSequence theStack;

@
Qx/
//@ public
/*@ public
@ public
@
@ public
@
¢
ox/

in size;

instance represents size <- theStack.int_length();
instance invariant theStack != null;
instance invariant_redundantly
theStack.int_length() <= MAX_SIZE;
instance invariant
(\forall int i; 0 <= i && i < theStack.int_length();
theStack.itemAt (i) !'= null);

/*@ public normal_behavior

also

@ © © © © © © ©

ex/

requires !theStack.isEmpty();
assignable size, theStack;
ensures theStack.equals(\old(theStack.trailer()));

public exceptional_behavior
requires theStack.isEmpty();
assignable \nothing;
signals_only BoundedStackException;

public void pop() throws BoundedStackException;

/*@ public normal_behavior

also

©@ © © © © © © O 0 0 O 0 b O

0x/

requires theStack.int_length() < MAX_SIZE && x != null;
assignable size, theStack;

ensures theStack.equals(\old(theStack.insertFront(x)));
ensures_redundantly theStack != null && top() ==

&& theStack.int_length()
== \old(theStack.int_length()+1);

public exceptional_behavior
requires theStack.int_length() >= MAX_SIZE || x == null;
assignable \nothing;
signals_only BoundedStackException, NullPointerException;
signals (BoundedStackException)

theStack.int_length() == MAX_SIZE;

signals (NullPointerException) x == null;

public void push(Object x)
throws BoundedStackException, NullPointerException;

/*@ public normal_behavior
Q requires !theStack.isEmpty();

Chapter 2: Class and Interface Specifications 24

ensures \result == theStack.first() && \result '= null;
also
public exceptional_behavior
requires theStack.isEmpty();
signals_only BoundedStackException;
signals (BoundedStackException e)
\fresh(e) && e != null && e.getMessage() != null
&& e.getMessage() .equals("empty stack");

@ © © © © © © ©

x/
public /*@ pure @*/ Object top() throws BoundedStackException;
}

The abstract model for BoundedStackInterface adds to the inherited model by declar-
ing a model instance field named theStack. This field is typed as a JMLObjectSequence.

In the following we describe how the new model instance field, theStack, is related to
size from BoundedThing. We also use this example to explain more JML features.

2.2.2.1 Data Groups and Represents Clauses

The in and represents clauses that follow the declaration of theStack are an important
feature in modeling with layers of model fields.” They also play a crucial role in relating
model fields to the concrete fields of objects, which can be considered to be the final layer
of detail in a design.

When a model field is declared, a data group with the same name is automatically
created; furthermore, this field is always a member of the group it creates. A data group
is a set of fields (locations) referenced by a specific name, i.e., the name of the model field
that created it [Leino98] [Leino-Poetzsch-Heffter-Zhou02].

When a data group (or field) is mentioned in the assignable clause for a method M,
then all members (i.e., fields) in that group can be assigned to in the body of M. Fields can
become a member of a data group through the data group clauses (i.e., the in and maps-
into clauses) that come immediately after the field declaration, in this case the in clause.
The in clause in BoundedStackInterface says that theStack is a member of the group
created by the declaration of model field size; this means that theStack might change its
value whenever size changes. However, another way of looking at this is that, if one wants
to change size, this can be done by changing theStack. We also say that theStack is a
member of size.

The maps-into clause is another way of adding members to a data group; it allows the
fields of an object to be included in an existing data group. For example, if a field F is a
reference or an array type, then the fields or array elements of F can be included in a data
group using the maps-into clause. The following are examples.

protected ArrayList elems;

//@ maps elems.theList \into theStack;
protected java.lang.Object[] theltems;
//@ maps theItems[*] \into theStack;

T of course, one could specify BoundedStackInterface without separating out the interface BoundedThing,
and in that case, these layers would be unnecessary. We have made this separation partly to demonstrate
more advanced features of JML, and partly to make the parts of the example smaller.

Chapter 2: Class and Interface Specifications 25

In the first example, the maps-into clause says that theList field of elems is a member
of theStack data group. Field elems is a concrete field of the type (i.e., it is not a model
field and thus is part of the implementation). This allows model field theList of elems
to change when theStack changes. Since theList is a model field and data group, this
also allows concrete fields of elems to change as theStack changes. Similarly, the second
example says that the elements of the array, theItems, can change when theStack changes.

Data groups have the same visibility as the model field that declared it, i.e, public,
protected, private, or package visibility. A field cannot be a member of a group that is less
visible than it is. For example, a public field cannot be a member of a protected group.

The in and maps-into clauses are important in “loosening up” the assignable clause, for
example to permit the fields of an object that implement the abstract model to be changed
[Leino95| [Leino95al. This “loosening up” also applies to model fields that are members of
other groups. For example, since theStack is a member of size, whenever size is men-
tioned in an assignable clause, then theStack is implicitly allowed to be modified.® Thus
it is only for rhetorical purposes that we mention both size and theStack in the assignable
clauses of pop and push. Note, however, that just mentioning theStack would not permit
size to be modified, because size is not a member of theStack’s group. Furthermore, it
is redundant to mention theStack when size has already been mentioned (although this
can help clarify the assignable clause, i.e., clarify which fields can be changed).

The represents clause in BoundedStackInterface says how the value of size is related
to the value of theStack. It says that the value of size is theStack.length().

A represents clause gives additional facts that can be used in reasoning about the spec-
ification. It serves the same purpose as an abstraction function in various proof methods
for abstract data types (such as [Hoare72al).

One can only use a represents clause to state facts about a field and its data group
members. To state relationships among concrete data fields or on fields that are not related
by a data group membership, one should use an invariant.

2.2.2.2 Redundant Specification

The second invariant clause that follows the represents clause in the specification of
BoundedStackInterface above is our first example of checkable redundancy in a specifi-
cation [Leavens-Baker99] [Tan94] [Tan95]. This concept is signaled in JML by the use of
the suffix _redundantly on a keyword (as in ensures_redundantly). It says both that
the stated property is specified to hold and that this property is believed to follow from
the other properties of the specification. In this case the redundant invariant follows from
the given invariant, the invariant inherited from the specification of BoundedThing, and
the fact stated in the represents clause. Even though this invariant is redundant, it is
sometimes helpful to state such properties, to bring them to the attention of the readers of
the specification.

Checking that such claimed redundancies really do follow from other information is also
a good way to make sure that what is being specified is really what is intended. Such

8 Note that the permission to assign a field goes from the more abstract field to the one in its group

(which in this case is also abstract). Miiller points out that this direction is necessary for information
hiding, because concrete fields are often hidden (e.g., they may be private), and as such cannot appear
in public specifications, so the public specification has to mention the more abstract field, which give
assignment rights to its members [Mueller02].

Chapter 2: Class and Interface Specifications 26

checks could be done manually, during reviews, or with the aid of a theorem prover. JML’s
runtime assertion checker can also check such redundant specifications, but, of course, can
only find examples where they do not hold.

2.2.2.3 Multiple Specification Cases

After the redundant invariant of BoundedStackInterface are the specifications of the pop,
push, and top methods. These are interesting for several new features that they present.
Each of these has both a normal and exceptional behavior specified. The meaning of such
multiple specification cases is that, when the precondition of one of them is satisfied, the
rest of that specification case must also be obeyed.

A specification with several specification cases is shorthand for one in which the separate
specifications are combined [Dhara-Leavens96] [Leavens97c| [Wing83] [Wills94]. The desug-
aring can be thought of as proceeding in two steps (see [Raghavan-Leavens05] for more
details). First, the public normal_behavior and public exceptional_behavior cases
are converted into public behavior specifications as explained above. This would produce
a specification for pop as shown below. The use of implies_that introduces a redundant
specification that can be used, as is done here, to point out consequences of the specification
to the reader. In this case the specification in question is the one mentioned in the refine
clause. Note that in the second specification case of the figure below, the default signals
clause has been added. This clause was omitted from the original specification, since no
particular details of the exception object were important to the specifier.

//@ refine "BoundedStackInterface.java";

public interface BoundedStackInterface extends BoundedThing {
/*@ also
@ implies_that
@ public behavior
requires !theStack.isEmpty();
assignable size, theStack;
ensures theStack.equals(\old(theStack.trailer()));
signals (java.lang.Exception) false;
also
public behavior
requires theStack.isEmpty();
assignable \nothing;
ensures false;
signals_only BoundedStackException;
signals (java.lang.Exception) true;

@ © © © © © © © © © ©

x/
public void pop() throws BoundedStackException;
b

The second step of the desugaring is shown below. As can be seen from this example,
public behavior specifications that are joined together using also have a precondition that
is the disjunction of the preconditions of the combined specification cases. The assignable
clause for the expanded specification is the union of all the assignable clauses for the cases.
To compensate for this, the predicate \not_assigned, is used in the exceptional behavior

Chapter 2: Class and Interface Specifications 27

specification cases to prohibit assignment to the locations (those in the data groups of size
and theStack) that are now part of the assignable clause. The ensures clauses of the second
desugaring step correspond to the ensures clauses for each specification case; they say that
whenever the precondition for that specification case held in the pre-state, its postcondition
must also hold. As can be seen in the specification below, in logic this is written using an
implication between \old wrapped around the case’s precondition and its postcondition.
Having multiple ensures clauses is equivalent to writing a single ensures clause that has as
its postcondition the conjunction of the given postconditions. Similarly, the signals clauses
in the desugaring correspond to those in the given specification cases; as for the ensures
clauses, each has a predicate that says that signaling that exception can only happen when
the predicate in that case’s precondition holds.

//@ refine "BoundedStackInterface.jml";
public interface BoundedStackInterface extends BoundedThing {
/*@ also
@ implies_that
@ public behavior
requires !theStack.isEmpty() || theStack.isEmpty();
assignable size, theStack;
ensures \old(!theStack.isEmpty())
==> theStack.equals(\old(theStack.trailer()));
ensures \old(theStack.isEmpty()) ==>
\not_assigned(size) && \not_assigned(theStack);
signals_only BoundedStackException;
signals (java.lang.Exception)
\old(!theStack.isEmpty()) ==> false;
signals (java.lang.Exception)
\old(theStack.isEmpty()) ==
\not_assigned(size) && \not_assigned(theStack)
&& true;

©@ @ © © © © O O O b O O ©

@x/
public void pop() throws BoundedStackException;
}

In the file ‘BoundedStackInterface.refines-java’ above, the precondition of pop re-
duces to true. However, the precondition shown is the general form of the expansion.
Similar remarks apply to other predicates.

Finally, note how, as in the specification of top, one can specify more details about the
exception object thrown. The exceptional behavior for top says that the exception object
thrown, e, must be freshly allocated, non-null, and have the given message.

2.2.2.4 Pitfalls in Specifying Exceptions

A particularly interesting example of multiple specification cases occurs in the specification
of the BoundedStackInterface’s push method. Like the other methods, this example
has two specification cases; one of these is a normal_behavior and one is an exceptional_
behavior. However, the exceptional behavior of push is interesting because it specifies more
than one exception that may be thrown. The requires clause of the exceptional behavior
says that an exception must be thrown when either the stack cannot grow larger, or when

Chapter 2: Class and Interface Specifications 28

the argument x is null. The first signals clause says that, if a BoundedStackException is
thrown, then the stack cannot grow larger, and the second signals clause says that, if a
NullPointerException is thrown, then x must be null. The specification is written in this
way because it may be that both conditions occur; when that is the case, the specification
allows the implementation to choose (even nondeterministically) which exception is thrown.

Specifiers should be wary of such situations, where two different signals clauses may both
apply simultaneously, because it is impossible in Java to throw more than one exception from
a method call. Thus, for example, if the specification of push had been written as follows,
it would not be implementable.® The problem is that both exceptional preconditions may
be true, and in that case an implementation cannot throw an exception that is an instance
of both a BoundedStackException and a NullPointerException.

/*@ public normal_behavior

Q requires theStack.length() < MAX_SIZE && x != null;

Q assignable size, theStack;

@ ensures theStack.equals(\old(theStack.insertFront(x)));

Q ensures_redundantly theStack != null && top() == x

Q@ && theStack.length() == \old(theStack.length()+1);
@ also

@ public exceptional_behavior

Q requires theStack.length() >= MAX_SIZE;

¢ assignable \nothing;

@ signals (Exception e) e instanceof BoundedStackException;
@ also // this is wrong!

@ public exceptional_behavior

¢ requires x == null;

(¢ assignable \nothing;

@ signals (Exception e) e instanceof NullPointerException;
x/

public void push(Object x)
throws BoundedStackException, NullPointerException;

One could fix the example above by writing one of the requires clauses in the two
exceptional behaviors to exclude the other, although this would make the specification
deterministic about which exception would be thrown when both exceptional conditions
occur. In general, it seems best to avoid this pitfall by writing signals clauses that do not
exclude other exceptions from being thrown whenever there are states in which multiple
exceptions may be thrown. That is, instead of using multiple signals_only clauses or
using multiple signals clauses like:

signals (Exception e) e instanceof BoundedStackException;

which only allows a BoundedStackException to be thrown when the precondition is
true, one can write a signals clause like:

signals (BoundedStackException);

which says nothing about what happens when other exceptions are thrown (see
Section 2.2.1.5 [Specifying Exceptional Behavior], page 21 for more details).

9 Thanks to Erik Poll for pointing this out.

Chapter 2: Class and Interface Specifications 29

2.2.2.5 Redundant Ensures Clauses

Finally, there is more redundancy in the specifications of push in the original specification
of BoundedStackInterface above, which has a redundant ensures clause in its normal
behavior. For an ensures_redundantly clause, what one checks is that the conjunction of
the precondition, the meaning of the assignable clause, and the (non-redundant) postcon-
dition together imply the redundant postcondition. It is interesting to note that, for push,
the specifications for stacks written in Eiffel (see page 339 of [Meyer97]) expresses just what
we specify in push’s redundant postcondition. This conveys strictly less information than
the non-redundant postcondition for push’s normal behavior, since it says little about the
elements of the stack.'®

In summary, using types like JMLObjectSequence for modeling can help the specifier
give more precise specifications. We describe more about such types in the next section.

2.3 Types For Modeling

JML comes with a suite of types with immutable objects and pure methods, that can be
used for defining abstract models. These are found in the package org. jmlspecs.models,
which includes both collection and non-collection types (such as JMLInteger) and a few
auxiliary classes (such as exceptions and enumerators).

The collection types in this package can hold either objects or values; this distinction
determines the notion of equality used on their elements and whether cloning is done on
the elements. The object collections, such as JMLObjectSet and JMLObjectBag, use == and
do not clone. The value collections, such as JMLValueSet and JMLValueBag, use .equals
to compare elements, and clone the objects added to and returned from them. The objects
in a value collection are representatives of equivalence classes (under .equals) of objects;
their values matter, but not their object identities. By contrast an object container contains
object identities, and the values in these objects do not matter.

Simple collection types include the set types, JMLObjectSet and JMLValueSet, and
sequence types JMLObjectSequence and JMLValueSequence. The binary relation and map
types can independently have objects in their domain or range. The binary relation types
are named JMLObjectToObjectRelation, JMLObjectToValueRelation, and so on. For
example, JMLObjectToValueRelation is a type of binary relations between objects (not
cloned and compared using ==) and values (which are cloned and compared using .equals).
The four map types are similarly named according to the scheme JML...To...Map.

Users can also create their own types with pure methods for mathematical modeling if
desired. Since pure methods may be used in assertions, they must be declared with the
modifier pure and pass certain conservative checks that make sure there is no possibility of
observable side-effects from their use. We discuss purity and give several examples of such
types below.

2.3.1 Purity

We say a method is pure if it is either specified with the modifier pure or is a method that
appears in the specification of a pure interface or class. Similarly, a constructor is pure if
it is either specified with the modifier pure or appears in the specification of a pure class.

10 Meyer’s second specification and implementation of stacks (see page 349 of [Meyer97]) is no better in
this respect, although, of course, the implementation does keep track of the elements properly.

Chapter 2: Class and Interface Specifications 30

A pure method, that is not a constructor, implicitly has a specification that does not
allow any side-effects. That is, its specification has the clauses

diverges false;
assignable \nothing;

added to each specification case; if the method has no specification given explicitly, then
these clauses are added as a lightweight specification. For this reason, if one is writing a pure
method, it is not necessary to otherwise specify an assignable clause (see Section 2.1.3.1
[The Assignable Clause], page 14), although doing so may improve the specification’s clarity.

A pure constructor has the clauses

diverges false;
assignable this.x*;

added to each specification case; if the constructor has no specification given explicitly,
then these clauses are added as a lightweight specification. This specification allows the
constructor to assign to the non-static fields of the class in which it appears (including those
inherited from its superclasses and model and ghost instance fields from the interfaces that
it implements).

Implementations of pure methods and constructors will be checked to see that they
meet these conditions; i.e., that pure methods do not assign to locations that exist in the
pre-state, and that pure constructors only assign to pre-existing locations that are fields
of the this object. To make such checking modular, some JML tools prohibit a pure
method or constructor implementation from calling methods or constructors that are not
pure. However, more sophisticated tools could more directly check the intended semantics
[Salcianu-Rinard05].

A pure method or constructor must also be provably terminating. Although JML does
not force users to make such proofs of termination, users writing pure methods and construc-
tors are supposed to make pure methods total in the sense that whenever, a pure method
is called it either returns normally or throws some exception. This is supposed to lessen
the possibility that assertion evaluation could loop forever, help make pure methods more
like mathematical functions, and help the runtime assertion checker. The runtime asser-
tion checker turns exceptions into arbitrary values of the appropriate result type [Cheon03|
[Cheon-Leavens05]; it cannot do anything with infinite loops.

Furthermore, a pure method is supposed to always either terminate normally or throw
an exception, even for calls that do not satisfy its precondition. Static verification tools for
JML should enforce this condition, by requiring a proof that a pure method implementation
satisfies the following specification

private behavior
requires true;
diverges false;
assignable \nothing;

(and similarly for constructors, except that the assignable clause becomes assignable
this.*; for constructors).

However, this implicit verification condition is a specification, and is thus cannot be used
in reasoning about calls to the method, even calls from within the class itself and recursive
calls from within the implementation. For this reason we recommend writing the method

Chapter 2: Class and Interface Specifications 31

or constructor specification in such a way that the effective precondition of the method is
“true,” making the proof of the above implicit verification condition trivial, and allowing
the termination behavior of the implementation to be relied upon by all clients.

Recursion is permitted, both in the implementation of pure methods and the data struc-
tures they manipulate, and in the specifications of pure methods. When recursion is used in
a specification, the proof of well-formedness for the specification involves the use of JML’s
measured_by clause.

Since a pure method may not go into an infinite loop, if it has a non-trivial precondition,
it should throw an exception when its normal precondition is not met. This exceptional
behavior does not have to be specified or programmed explicitly, but technically there is an
obligation to meet the specification that the method never loops forever.

Furthermore, a pure method must be deterministic, in the sense that when called in a
given state, it must always return the same value. Similarly a pure constructor should be
deterministic in the sense that when called in a given state, it always initializes the object
in the same way.

A pure method can be declared in any class or interface, and a pure constructor can be
declared in any class. JML will specify the pure methods and constructors in the standard
Java libraries as pure.

As a convenience, instead of writing pure on each method declared in a class and in-
terface, one can use the modifier pure on classes and interfaces. This simply means that
each non-static method and each constructor declared in such a class or interface is pure.
Note that this does not mean that all methods inherited (but not declared in and hence not
overridden in) the class or interface are pure. For example, every class inherits ultimately
from java.lang.0Object, which has some methods, such as notify and notifyAll that are
manifestly not pure. Thus each class will have some methods that are not pure. Despite
this, it is convenient to refer to classes and interfaces declared with the pure modifier as
pure.

In JML the modifiers model and pure are orthogonal. (Recall something declared with
the modifier model does not have to be implemented, and is used purely for specification
purposes.) Therefore, one can have a model method that is not pure (these might be useful
in JML’s model programs); conversely, a Java method can be pure (and thus not a model
method). Nevertheless, usually a model method (or constructor) should be pure, since there
is no way to use non-pure methods in an assertion, and model methods cannot be used in
normal Java code.

By the same reasoning, model classes should, in general, also be pure. Model classes
cannot be used in normal Java code, and hence their methods are only useful in assertions
(and JML’s model programs). Hence it is typical, although not required, that a model class
also be a pure class. We give some examples of pure interfaces, abstract classes, and classes
below.

2.3.2 Money

The following example begins a specification of money that would be suitable for use in
abstract models. Our specification is rather artificially broken up into pieces to allow
each piece to have a specification that fits on a page. This organization is not necessarily

Chapter 2: Class and Interface Specifications 32

something we would recommend, but it does give us a chance to illustrate more features of
JML.

Consider first the interface Money specified below. The abstract model here is a single
field of the primitive Java type long, which holds a number of pennies. Note that the
declaration of this field, pennies, again uses the JML keyword instance.

package org.jmlspecs.samples.prelimdesign;
import org.jmlspecs.models.JMLType;

public /*@ pure @/ interface Money extends JMLType
{

//@ public model instance long pennies;
//@ public instance constraint pennies == \old(pennies);

/*@ public normal_behavior
assignable \nothing;
ensures \result == pennies / 100;

for_example

public normal_example
requires pennies == 703;
assignable \nothing;
ensures \result == 7;
also
public normal_example
requires pennies == 799;
assignable \nothing;
ensures \result == 7;
also
public normal_example
requires pennies == -503;
assignable \nothing;
ensures \result == -5;

@ © © © © © 0 0 O o oo O O O

0/
public long dollars();

/*@ public normal_behavior

assignable \nothing;

ensures \result == pennies % 100;
for_example

requires pennies == 703;

assignable \nothing;

ensures \result == 3;

also
requires pennies == -503;
assignable \nothing;

@ © © © © © © © ©

Chapter 2: Class and Interface Specifications 33

@ ensures \result == -3;
@x/
public long cents();

/*@ also
@ public normal_behavior

¢ assignable \nothing;

@ ensures \result

@ <==> 02 instanceof Money

Q &% pennies == ((Money)o2).pennies;

@x/
public boolean equals(/*@ nullable @/ Object 02);

/*@ also
@ public normal_behavior
(¢ assignable \nothing;
@ ensures \result instanceof Money
@ && ((Money)\result) .pennies == pennies;
x/
public Object clone();

}

This interface has a history constraint, which says that the number of pennies in an
object cannot change.!!

The following explain more aspects of JML related to the above specification.

2.3.2.1 Redundant Examples

The interesting aspect of Money’s method specifications is another kind of redundancy. This
new form of redundancy is examples, which follow the keyword “for_example”.

Individual examples are given by normal_example clauses (adapted from our previous
work on Larch/C++ [Leavens96b] [Leavens-Baker99]). Any number of these'? can be given
in a specification. In the specification of Money above there are three normal examples given
for dollars and two in the specification of cents.

The specification in each example should be such that:

e the example’s precondition implies the precondition of the expanded meaning of the
specified behaviors,

e the example’s assignable clause specifies a subset of the locations that are assignable
according to the expanded meaning of the specified behaviors, and

e assuming the example’s assignable clause, the conjunction of:

L There is no use of initially in this interface, so data type induction cannot assume any particular

starting value. But this is desirable, since if a particular starting value was specified, then by the history

constraint, all objects would have that value.

12 One may also give exceptional_example clauses, which are analogous to exceptional_behavior specifi-

cations, and example clauses, which are analogous to behavior specifications. There is also a lightweight
form of example, this is similar to the example form, except that the introductory keywords “public
example” are omitted.

Chapter 2: Class and Interface Specifications 34

e the example’s precondition (wrapped by \old()),

e the precondition of the expanded meaning of the specified behaviors (also wrapped
by \o1d()), and

e the postcondition of the expanded meaning of the specified behaviors
should be equivalent to the example’s postcondition.

Requiring equivalence to the example’s postcondition means that it can serve as a test
oracle for the inputs described by the example’s precondition. If there is only one specified
public normal_behavior clause and if there are no preconditions and assignable clauses,
then the example’s postcondition should the equivalent to the conjunction of the example’s
precondition and the postcondition of the public normal_behavior specification. Typi-
cally, examples are concrete, and serve to make various rhetorical points about the use of
the specification to the reader. (Exercise: check all the examples given!)

2.3.2.2 JMLType and Informal Predicates

The interface Money is specified to extend the interface JMLType. This interface is given
below. Classes that implement this interface must have pure equals and clone methods
with the specified behavior. The methods specified override methods in the class Object,
and so they use the form of specification that begins with the keyword “also”.

Chapter 2: Class and Interface Specifications 35

package org.jmlspecs.models;

/** Objects with a clone and equals method.
* JMLObjectType and JMLValueType are refinements

x for object and value containers (respectively).
* Qversion $Revision: 1.20 $

* Qauthor Gary T. Leavens and Albert L. Baker.

* Q@see JMLObjectType

* @see JMLValueType

*/

//@ pure

public interface JMLType extends Cloneable, java.io.Serializable {

/** Return a clone of this object. */

/*@ also
@ public normal_behavior
Q@ ensures \result != null;
(C] ensures \result instanceof JMLType;
Q ensures ((JMLType)\result).equals(this);
Qx/
//@ implies_that
/*Q ensures \result != null
@ && \typeof (\result) <: \type(JMLType);
ex/

public /*@ pure @*/ Object clone();

/** Test whether this object’s value is equal to the given argument.
*/

/*@ also
@ public normal_behavior
Q@ ensures \result ==
e ob2 !'= null
C] && (* ob2 is not distinguishable from this,
C] except by using mutation or == *);
@ implies_that
@ public normal_behavior
e Al

@ requires ob2 != null && ob2 instanceof JMLType;

Q ensures ((JMLType)ob2).equals(this) == \result;

@ also

Q@ requires ob2 == this;

e ensures \result <==> true;

e I3
Qx/

public /*@ pure @*/ boolean equals(/*@ nullable @*/ Object ob2);

/** Return a hash code for this object. */
public /*@ pure @/ int hashCode();

Chapter 2: Class and Interface Specifications 36

The specification of JMLType is noteworthy in its use of informal predicates [Leavens96b].
In JML these start with an open parenthesis and an asterisk (‘(*’) and continue until a
matching asterisk and closing parenthesis (‘*)’). In the public specification of equals, the
normal_behavior’s ensures clause uses an informal predicate as an escape from formality
The use of informal predicates avoids the delicate issues of saying formally what observable
aliasing means, and what equality of values means in general.!?

In the implies_that section of the specification of the equals method is a nested case
analysis, between {| and |}. The meaning of this is that each pre- and postcondition pair
has to be obeyed. The first of these nested pairs is essentially saying that equals has to be
symmetric. The second of these is saying that it has to be reflexive.

The implies_that section of the clone method states some implications of the
specification given that are useful for ESC/Java. These repeat, from the first part of
clone’s specification, that the result must not be null, and that the result’s dynamic type,
\typeof (\result), must be a subtype of (written <:) the type JMLType.

2.3.3 MoneyComparable and MoneyOps

The type Money lacks some useful operations. The extensions below provide specifications
of comparison operations and arithmetic, respectively.

The specification in file ‘MoneyComparable.java’ is interesting because each of the
specified preconditions protects the postcondition from undefinedness in the postcondition
[Leavens-Wing97a]. For example, if the argument m2 in the greaterThan method were
null, then the expression m2.pennies would not be defined.

package org.jmlspecs.samples.prelimdesign;

public /*Q@ pure O/ interface MoneyComparable extends Money
{
/*@ public normal_behavior
@ requires m2 != null;
@ assignable \nothing;
@ ensures \result <==> pennies > m2.pennies;
Qx/
public boolean greaterThan(Money m2);

/*@ public normal_behavior
@ requires m2 != null;
@ assignable \nothing;
@ ensures \result <==> pennies >= m2.pennies;
x/
public boolean greaterThanOrEqualTo(Money m2);

/*@ public normal_behavior
@ requires m2 != null;

13 Observable aliasing is a sharing relation between objects that can be detected by a program. Such

a program, might, for example modify one object and read a changed value from the shared object.
Formalizing this in general is beyond the scope of this paper, and probably beyond what JML can
describe.

Chapter 2: Class and Interface Specifications 37

@ assignable \nothing;
@ ensures \result <==> pennies < m2.pennies;
ox/

public boolean lessThan(Money m2);

/*@ public normal_behavior
@ requires m2 != null;
@ assignable \nothing;
@ ensures \result <==> pennies <= m2.pennies;
Qx/
public boolean lessThanOrEqualTo(Money m2);
+

The interface specified in the file ‘MoneyOps.java’ below extends the interface specified
above. MoneyOps is interesting for the use of its pure model methods: inRange, can_add,
and can_scaleBy. These methods cannot be invoked by Java programs; that is, they would
not appear in the Java implementation. When, for example inRange is called in a predicate,
it is equivalent to using some correct implementation of its specification. The specification
of inRange also makes use of a local specification variable declaration, which follows the
keyword “01d”. Such declarations allow one to abbreviate long expressions, or, to make
rhetorical points by naming constants, as is done with epsilon. These 0ld declarations
are treated as locations that are initialized to the pre-state value of the given expression.
Model methods can be normal (instance) methods as well as static (class) methods.

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @*/ interface MoneyOps extends MoneyComparable

{
/*@ public normal_behavior

e old double epsilon = 1.0;
@ assignable \nothing;
Q ensures \result
e <==> Long.MIN_VALUE + epsilon < d
@ && d < Long.MAX_VALUE - epsilon;
@ public model boolean inRange(double d);
Q
@ public normal_behavior
@ requires m2!= null;
@ assignable \nothing;
@ ensures \result
@ <==> inRange((double) pennies + m2.pennies);
@ public model boolean can_add(Money m2);
@
@ public normal_behavior
¢ ensures \result <==> inRange(factor * pennies);

@ public model boolean can_scaleBy(double factor);
x/

Chapter 2: Class and Interface Specifications 38

/*@ public normal_behavior

Q 0ld boolean can_add = can_add(m2); // FIXME: inline.
@ requires m2 != null && can_add;

@ assignable \nothing;

@ ensures \result != null

@ && \result.pennies == this.pennies + m2.pennies;
@ for_example

@ public normal_example

e requires this.pennies == 300 && m2.pennies == 400;

Q assignable \nothing;

@ ensures \result != null && \result.pennies == 700;
Qx/

public MoneyOps plus(Money m2);

/*@ public normal_behavior
0old boolean inRange = inRange((double) pennies - m2.pennies); // FIXME: inli
requires m2 != null
&% inRange;
assignable \nothing;
ensures \result != null
&& \result.pennies == this.pennies - m2.pennies;
for_example
public normal_example
requires this.pennies == 400 && m2.pennies == 300;
assignable \nothing;
ensures \result != null && \result.pennies == 100;

©@ © © © © © © © © ©

@x/
public MoneyOps minus(Money m2);

/*@ public normal_behavior

Q requires can_scaleBy(factor);
Q assignable \nothing;
@ ensures \result != null
Q && \result.pennies == (long) (factor * pennies);
@ for_example
@ public normal_example
@ requires pennies == 400 && factor == 1.01;
@ assignable \nothing;
Q@ ensures \result != null && \result.pennies == 404;
x/
public MoneyOps scaleBy(double factor);

¥

Note also that JML uses the Java semantics for mixed-type expressions. For example in
the ensures clause of the above specification of plus, m2.pennies is implicitly coerced to a
double-precision floating point number, as it would be in Java.

Chapter 2: Class and Interface Specifications 39

2.3.4 MoneyAC

The key to proofs that an implementation of a class or interface specification is correct lies
in the use of in, maps-into, and represents clauses [Hoare72a] [Leino95].

Consider, for example, the abstract class specified in the file ‘MoneyAC.java’ below.
This class is abstract and has no constructors. The class declares a concrete field numCents,
which is related to the model instance field pennies by the represents clause.!* The
represents clause states that the value of pennies is the value of numCents. This allows
relatively trivial proofs of the correctness of the dollars and cents methods, and is key to
the proofs of the other methods.

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @/ abstract class MoneyAC implements Money
{

protected long numCents;

//@ in pennies;

//@ protected represents pennies <- numCents;

/*@ protected constraint_redundantly
@ numCents == \old(numCents); @x/

public long dollars() {
return numCents / 100;

}

public long cents() {
return numCents % 100;

}

public boolean equals(/*@ nullable @*/ Object 02) {
if (02 instanceof Money) {
Money m2 = (Money)o2;
return numCents
== (100 * m2.dollars() + m2.cents());
} else {
return false;
}
+

public int hashCode() {
return (int)numCents;

}

4 This represents clause is implicitly an instance, as opposed to a static, represents clause, because it
appears in a class declaration.

Chapter 2: Class and Interface Specifications 40

¥

public Object clone() {
return this;

}

2.3.5 MoneyComparableAC

The straightforward implementation of the pure abstract subclass MoneyComparableAC
is given below. Besides extending the class MoneyAC, it implements the interface
MoneyComparable. Note that the model and concrete fields are both inherited by this

class.

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @%/ abstract class MoneyComparableAC

{

}

extends MoneyAC implements MoneyComparable

protected static /*@ pure @x*/
long totalCents(Money m2)

{
long res = 100 * m2.dollars() + m2.cents();
//@ assert res == m2.pennies;
return res;

}

public boolean greaterThan(Money m2)
{

return numCents > totalCents(m2);

}

public boolean greaterThanOrEqualTo(Money m2)
{

return numCents >= totalCents(m2);

}

public boolean lessThan(Money m2)
{

return numCents < totalCents(m2);

}

public boolean lessThanOrEqualTo(Money m2)
{

return numCents <= totalCents(m2);

}

Chapter 2: Class and Interface Specifications 41

An interesting feature of the class MoneyComparableAC is the protected static method
named totalCents. For this method, we give its code with an embedded assertion, written
following the keyword assert.'®

Note that the model method, inRange is not implemented, and does not need to be
implemented to make this class correctly implement the interface MoneyComparable.

2.3.6 USMoney

Finally, a concrete class implementation is given in the file ‘USMoney. java’ shown below.
The class USMoney implements the interface MoneyOps. Note that specifications as well as
code are given for the constructors

package org.jmlspecs.samples.prelimdesign;

public /*@ pure @/ class USMoney
extends MoneyComparableAC implements MoneyOps
{

/*@ public normal_behavior

@ assignable pennies;
@ ensures pennies == Cs;
@ implies_that
Q@ protected normal_behavior
@ assignable pennies, numCents;
@ ensures numCents == cs;
Qx/

public USMoney(long cs)

{
numCents = cs;

b

/*@ public normal_behavior
@ assignable pennies;
@ ensures pennies == (long) (100.0 * amt);
@ // ensures_redundantly (* pennies holds amt dollars *);
@x/
public USMoney(double amt)
{
numCents = (long) (100.0 * amt);
}

public MoneyOps plus(Money m2)
{

15 As of JDK 1.4, assert is also a reserved word in Java. One can thus write assert statements either
in standard Java or in JML annotations. If one writes an assert statement as a JML annotation, all
of the JML extensions to the Java expression syntax see Section 3.1 [Extensions to Java Expressions
for Predicates], page 55 for the predicate can be used, but no side-effects are allowed in this predicate.
Such a JML assert-statement may also refer to model and ghost variables. In a Java assert statement,
i.e., in an assert-statement that is not in an annotation, one cannot use JML’s extensions for assertions,
because such assertions must compile with a Java compiler.

Chapter 2: Class and Interface Specifications 42

return new USMoney(numCents + totalCents(m2));

}

public MoneyOps minus(Money m2)
{

return new USMoney(numCents - totalCents(m2));

}

public MoneyOps scaleBy(double factor)
{
return new USMoney(numCents * factor / 100.0);

}

public String toString()
{
return "$" + dollars() + "." + cents();
}
}

The constructors each mention the fields that they initialize in their assignable clause.
This is because the constructor’s job is to initialize these fields. One can think of a new
expression in Java as executing in two steps: allocating an object, and then calling the
constructor. Thus the specification of a constructor needs to mention the fields that it can
initialize in the assignable clause.

The first constructor’s specification also illustrates that redundancy can also be used in
an assignable clause. A redundant assignable clause follows if the meaning of the set of
locations named is a subset of the ones denoted by the non-redundant clause for the same
specification case. In this example the redundant assignable clause follows from the given
assignable clause and the meaning of the in clause inherited from the superclass MoneyAC.

The second constructor above is noteworthy in that there is a redundant ensures clause
that uses an informal predicate [Leavens96b]. In this instance, the informal predicate is
used as a comment (which could also be used). Recall that informal predicates allow an
escape from formality when one does not wish to give part of a specification in formal detail.

The plus and minus methods use assume statements; these are like assertions, but are
intended to impose obligations on the callers [Back-Mikhajlova-vonWright98]. The main
distinction between a assume statement and a requires clause is that the former is a
statement and can be used within code. These may also be treated differently by different
tools. For example, ESC/Java [Leino-etal00] will require callers to satisfy the requires clause
of a method, but will not enforce the precondition if it is stated as an assumption.

2.4 Use of Pure Classes

Since USMoney is a pure class, it can be used to make models of other classes. An example
is the abstract class specified in the file ‘Account . jml’ below. The first model field in this
class has the type USMoney, which was specified above. (Further explanation follows the
specification below.)

package org.jmlspecs.samples.prelimdesign;

Chapter 2: Class and Interface Specifications 43

public class
//@ public
//@ public
/*@ public

(C]
//@ public

Account {
model MoneyOps credit;
model String accountOwner;
invariant accountOwner != null && credit != null
&& credit.greaterThanOrEqualTo(new USMoney(0)); @x/
constraint accountOwner.equals(\old(accountOwner));

/*@ public normal_behavior

@ requires own != null && amt != null

Q && (new USMoney(1)).lessThanOrEqualTo(amt) ;

¢ assignable credit, accountOwner;

¢ ensures credit.equals(amt) && accountOwner.equals(own);
x/

public Account(MoneyOps amt, String own);

/*@ public normal_behavior
Q@ assignable \nothing;

@ ensures \result.equals(credit);
x/
public /*@ pure @*/ MoneyOps balance();

/*@ public normal_behavior

old

©@ © © © © © © © © © ©

ex/

boolean can_scale = credit.can_scaleBy(1.0 + rate);

requires 0.0 <= rate && rate <= 1.0

&& can_scale;

assignable credit;

ensures credit.equals(\old(credit).scaleBy(1.0 + rate));
for_example
public normal_example

requires rate == 0.05

&& (new USMoney(4000)) .equals(credit);

assignable credit;
ensures credit.equals(new USMoney(4200));

public void payInterest(double rate);

/*@ public normal_behavior

old

@ © © © © © © © © ©

boolean can_add = credit.can_add(amt);

requires amt != null

&& amt.greaterThanOrEqualTo(new USMoney(0))
&& can_add;

assignable credit;

ensures credit.equals(\old(credit).plus(amt));
for_example
public normal_example

requires credit.equals(new USMoney(40000))

&& amt.equals(new USMoney(1));

Chapter 2: Class and Interface Specifications 44

@ assignable credit;
Q ensures credit.equals(new USMoney(40001));
x/

public void deposit(MoneyOps amt);

/*@ public normal_behavior
@ requires amt != null
Q && (new USMoney(0)) .lessThanOrEqualTo (amt)
&& amt.lessThanOrEqualTo(credit);
assignable credit;
ensures credit.equals(\old(credit) .minus(amt));
for_example
public normal_example
requires credit.equals(new USMoney(40001))
&& amt.equals(new USMoney(40000)) ;
assignable credit;
ensures credit.equals(new USMoney(1));

@ © © © © © © © ©

ox/
public void withdraw(MoneyOps amt);
}

The specification of Account makes good use of examples. It also demonstrates the
various ways of protecting predicates used in the specification from undefinedness [Leavens-
Wing97a]. The principal concern here, as is often the case when using reference types
in a model, is to protect against the model fields being null. As in Java, fields and
variables of reference types can be null. In the specification of Account, the invariant
states that these fields should not be null. Since implementations of public methods must
preserve the invariants, one can think of the invariant as conjoined to the precondition
and postcondition of each public method, and the postcondition of each public constructor.
Hence, for example, method pre- and postconditions do not have to state that the fields
are not null. However, often other parts of the specification must be written to allow the
invariant to be preserved, or established by a constructor. For example, in the specification
of Account’s constructor, this is done by requiring amt and own are not null, since, if they
could be null, then the invariant and the postcondition could not be established.

2.5 Composition for Container Classes

The following specifications lead to the specification of a class Digraph (directed graph).
This gives a more interesting example of how more complex models can be composed in
JML from other classes. In this example we use model classes and the pure containers
provided in the package org. jmlspecs.models.

2.5.1 NodeType

The file ‘NodeType.java’ contains the specification of an interface NodeType. We also
declare this interface to be pure, since we want to use its methods in the specifications of
other classes. (This is appropriate, since all the methods of NodeType are side-effect free.)

package org.jmlspecs.samples.digraph;

Chapter 2: Class and Interface Specifications 45

import org.jmlspecs.models.*;

public /*@ pure @/ interface NodeType extends JMLType {

/*@ also
@ public normal_behavior
@ requires !(o instanceof NodeType);
Q ensures \result == false;
@x/

public boolean equals(/*@ nullable @/ Object o);

public int hashCode();

/*@ also
@ public normal_behavior
¢ ensures \result instanceof NodeType
¢ && ((NodeType)\result).equals(this);
x/

public Object clone();

2.5.2 ArcType

ArcType is specified as a pure class in the file ‘ArcType. jml’ shown below. In theory,
this class could have been declared with the model modifier, since it does not appear in
the interface to Digraph. However, we specify it as a normal Java class for simplicity, and
because model classes do not currently work in JML’s runtime assertion checker. We declare
ArcType to be a pure class so that its methods can be used in assertions. The two model
fields for ArcType, from and to, are both of type NodeType. We specify the equals method
so that two references to objects of type ArcType are equal if and only if they have equal
values in the from and to model fields. Thus, equals is specified using NodeType.equals.
We also specify that ArcType has a public clone method, fulfilling the obligations of a type
that implements JMLType. ArcType must implement JMLType so that its objects can be
placed in a JMLValueSet. We use such a set for one of the model fields of Digraph.

package org.jmlspecs.samples.digraph;

import org.jmlspecs.models.JMLType;

/*@ pure @*/ public class ArcType implements JMLType {
//@ public model NodeType from;
//@ public model NodeType to;

//@ public invariant from != null &% to !'= null;

/*@ public normal_behavior
@ requires from != null && to != null;

Chapter 2: Class and Interface Specifications 46

Q assignable this.from, this.to;
@ ensures this.from.equals(from)
@ && this.to.equals(to);
@x/
public ArcType(NodeType from, NodeType to);

/*@ also
@ public normal_behavior
e Al
¢ requires o instanceof ArcType;
Q ensures \result
@ <==> ((ArcType)o) .from.equals (from)
@ && ((ArcType)o) .to.equals(to);
C] also
Q requires !(o instanceof ArcType);
@ ensures \result == false;
e |}

Qx/
public boolean equals(/*@ nullable @*/ Object o);

/*@ also
(] public normal_behavior
@ ensures \result instanceof ArcType
@ &% ((ArcType)\result).equals(this);
Qx/
public Object clone();

The use of also in the specification of ArcType’s equals method is interesting. It
separates two cases of the normal behavior for that method. This is equivalent to using
two public normal_behavior clauses, one for each case. That is, when the argument is
an instance of ArcType, the method must return true just when this and o have the same
from and to fields. And when o is not an instance of ArcType, the equals method must
return false.

2.5.3 Digraph

Finally, the specification of the class Digraph is given in the file ‘Digraph. jml’ shown below.
This specification demonstrates how to use container classes, like JMLValueSet, combined
with appropriate invariants, to specify models that are compositions of other classes. In this
specification, the container class JMLValueSet is used as the type of the model fields nodes
and arcs. Since JML currently only works with a non-generic version of Java, the first
invariant clause restricts nodes so that every object in nodes is, in fact, of type NodeType.
Similarly, the next invariant clause we restrict arcs to be a set of ArcType objects. In both
cases, since the type is JMLValueSet, membership is determined by the equals method for
the type of the elements (rather than reference equality).

package org.jmlspecs.samples.digraph;

Chapter 2: Class and Interface Specifications 47

//@ model import org.jmlspecs.models.*;
public class Digraph {
//@ public model JMLValueSet nodes;
//@ public model JMLValueSet arcs;
/*@ public invariant_redundantly nodes != null;
public invariant (\forall JMLType n; nodes.has(n);
n instanceof NodeType) ;
public invariant_redundantly arcs != null;
public invariant (\forall JMLType a; arcs.has(a);
a instanceof ArcType);
public invariant
(\forall ArcType a; arcs.has(a);
nodes.has(a.from) && nodes.has(a.to));

© 0 © 0 0 0 O

ex/

/*@ public normal_behavior
Q assignable nodes, arcs;
@ ensures nodes.isEmpty() && arcs.isEmptyQ);
Qx*/

public Digraph();

/*@ public normal_behavior
@ requires_redundantly n != null;
@ assignable nodes;
@ ensures nodes.equals(\old(nodes.insert(n)));
@x/
public void addNode(NodeType n);

/*Q@ public normal_behavior
@ requires unconnected(n);
@ assignable nodes;
@ ensures nodes.equals(\old(nodes.remove(n)));
Qx*/
public void removeNode (NodeType n);

/*@ public normal_behavior

@ requires_redundantly inFrom != null && inTo !'= null;

@ requires nodes.has(inFrom) && nodes.has(inTo);

@ assignable arcs;

@ ensures arcs.equals(

© \old(arcs) .insert(new ArcType(inFrom, inTo)));
Qx*/

public void addArc(NodeType inFrom, NodeType inTo);

/*@ public normal_behavior
Q requires_redundantly inFrom != null && inTo != null;
@ requires nodes.has(inFrom) && nodes.has(inTo);

Chapter 2: Class and Interface Specifications 48

@ assignable arcs;
e ensures arcs.equals(
@ \old(arcs) .remove (new ArcType(inFrom, inTo)));
Qx*/
public void removeArc(NodeType inFrom, NodeType inTo);

/*@ public normal_behavior
@ assignable \nothing;
@ ensures \result == nodes.has(n);
Qx*/
public /*@ pure @*/ boolean isNode(NodeType n);

/*@ public normal_behavior

@ requires_redundantly inFrom != null && inTo != null;

@ ensures \result == arcs.has(new ArcType(inFrom, inTo));
Q

Qx/

public /*@ pure @*/ boolean isArc(NodeType inFrom,
NodeType inTo);

/*@ public normal_behavior
@ requires nodes.has(start) && nodes.has(end);
@ assignable \nothing;
@ ensures \result
Q == reachSet(new JMLValueSet(start)).has(end);
Qx*/
public /*@ pure @*/ boolean isAPath(NodeType start,
NodeType end) ;

/*@ public normal_behavior
@ assignable \nothing;
@ ensures \result <==>

Q ! (\exists ArcType a; arcs.has(a);
@ a.from.equals(n) || a.to.equals(n));
Qx/

public /*@ pure @+*/ boolean unconnected(NodeType n);

/*@ public normal_behavior
requires_redundantly nodeSet != null;
requires (\forall JMLType o; nodeSet.has(o);
o instanceof NodeType && nodes.has(o));

{l

assignable \nothing;
also

requires nodeSet.equals(OneMoreStep(nodeSet));

ensures \result != null && \result.equals(nodeSet);
also

© 0 © © 0 o0 O o

Chapter 2: Class and Interface Specifications 49

Q requires !modeSet.equals(OneMoreStep(nodeSet));
Q ensures \result != null
Q && \result.equals(reachSet (OneMoreStep(nodeSet)));

e I
@ public pure model JMLValueSet reachSet(JMLValueSet nodeSet);
Qx/

/*@ public normal_behavior
@ requires_redundantly nodeSet != null;
@ requires (\forall JMLType o; nodeSet.has(o0);
Q o instanceof NodeType && nodes.has(o));
Q assignable \nothing;
e ensures_redundantly \result != null;
@ ensures \result.equals(nodeSet.union(
Q new JMLValueSet { NodeType n | nodes.has(n)
Q && (\exists ArcType a; a != null && arcs.has(a);
¢ nodeSet.has(a.from) && n.equals(a.to))}));
@ public pure model
@ JMLValueSet OneMoreStep(JMLValueSet nodeSet);
Qx/
}

An interesting use of pure model methods appears at the end of the specification of
Digraph in the pure model method reachSet. This method constructively defines the set
of all nodes that are reachable from the nodes in the argument nodeSet. This specification
uses a nested case analysis, between {| and |}. The meaning of this is again that each pre-
and postcondition pair has to be obeyed, but by using nesting, one can avoid duplication
of the requires clause that is found at the beginning of the specification. The measured_
by clause is needed because this specification is recursive; the measure given allows one to
describe a termination argument, and thus ensure that the specification is well-defined. This
clause defines an integer-valued measure that must always be at least zero; furthermore,
the measure for a call and recursive uses in the specification must strictly decrease [Owre-
etal95]. The recursion in the specification builds up the entire set of reachable nodes by, for
each recursive reference, adding the nodes that can be reached directly (via a single arc)
from the nodes in nodeSet.

2.6 Behavioral Subtyping

As in Java, a subtype inherits members (fields and methods) from its supertypes. A subtype
also inherits all the class level-specifications associated with fields and all method specifica-
tions for public and protected instance methods. This specification inheritance has the effect
of making the subtype a behavioral subtype [Liskov-Wing94], in the sense that instances of
the subtype obey the specifications its supertype(s) [Dhara-Leavens96] [Leavens-Weihl95].

Class-level specifications associated with fields include include invariants and history
constraints (see Section 2.2.1.2 [Invariants and History Constraint], page 20), as well as
initially clauses (see Section 2.1.1 [Model Fields|, page 13) data group declarations (see
Section 2.2 [Data Groups|, page 19), and represents clauses (see Section 2.2.2.1 [Data Groups
and Represents Clauses], page 24). Inheritance of invariants means that each supertype’s

Chapter 2: Class and Interface Specifications 50

invariants must also hold in the subtype. Similarly, every history constraint specified in each
supertype must be obeyed in the subtype. And all initially clauses specified for supertype
fields must also be obeyed in all subtypes. Fields declared in a supertype retain their data
group membership when inherited. Their represents clauses are also inherited.

As in Java, private fields are inherited by a subtype but not visible to it. Similarly,
default privacy (i.e., package visibility) fields are not accessible if the subtype is declared
in a different package than the supertype declaring the field. As in Java, these fields are
present in the objects of the subtype, but not accessible to code written in the subtype. In
the same way, class level specifications associated with such fields must still be obeyed by
objects of the subtype. Various restrictions to JML that ensure that this is always possible
are being investigated [Ruby-Leavens00].

Specifications for instance methods are also inherited in the sense that public and pro-
tected specification cases must be obeyed by all overriding methods [Dhara-Leavens96]
[Leavens97c|. This inheritance of method specifications ensures that a client’s reasoning
about a method call will still be valid, even if the method is overridden [America87] [Amer-
ica91] [Leavens-Weihl95], and thus that a subclass is a behavioral subtype of its supertypes
[Dhara-Leavens96|. Note that private and default (package) visibility specification cases are
not visible to subtypes, and hence do not have to be obeyed by them; not inheriting such
specification cases does not cause clients reasoning problems, as these specification cases are
not visible to clients making method calls (in general).'® Furthermore, specifications are
not inherited for constructors or for static methods, since they are not involved in dynamic
dispatch.

Inheritance of method specifications can be thought of textually. For each instance
method, m specified in a class C, one can imagine copying into the specification of m the
public and protected specification cases for m given in all of C’s ancestors and in all the
interfaces C' implements; these specification cases would be combined using also [Dhara-
Leavens96] [Raghavan-Leavens05].'” (This is the reason for the use of also at the beginning
of specifications in overriding methods.) By the semantics of method combination using
also, these behaviors must all be satisfied by the method, in addition to any explicitly
specified behaviors.

For example, consider the class PlusAccount, specified in file ‘PlusAccount. jml’ shown
below. It is specified as a subclass of Account (see Section 2.4 [Use of Pure Classes],
page 42). Thus it inherits the fields of Account, and Account’s public invariants, history
constraints, and method specifications. (The specification of Account given above does not
have any protected specification information.) Since it inherits the fields of its superclass,
a textual copy of the method specification cases of Account would still be meaningful in the
context of PlusAccount. Thinking of such textual copies works if one adds new (model)
fields to specify the subclass and relates them to the existing ones. If instead one tried
to respecify the fields of a supertype with invariants and history constraints that violated
the (inherited) specification of that supertype, then the resulting specification would be
contradictory, and hence not be correctly implementable.

16 When such private and default visibility specification cases are visible to callers, they may only be used
in verification of a method call if the call can be shown to be executing that method, as opposed to some
override.

17 However, textual copying shouldn’t be taken literally; if a subclass declares a field that hides the fields
of its superclass, renaming must be done to prevent name capture.

Chapter 2: Class and Interface Specifications

package org.jmlspecs.samples.prelimdesign;

public class PlusAccount extends Account {
//@ public model MoneyOps savings, checking; in credit;

/*@ public represents credit \such_that

¢ credit.equals(savings.plus(checking));
x/
//@ public invariant savings != null && checking != null;
/*@ public invariant_redundantly
e savings.plus(checking)
Q .greaterThanOrEqualTo (new USMoney(0));
x/

/*Q@ public normal_behavior
@ requires sav != null && chk != null && own !'= null
Q &% (new USMoney (1)) .lessThanOrEqualTo(sav)
@ && (new USMoney (1)) .lessThanOrEqualTo(chk) ;
Q assignable credit, owner;
¢ assignable_redundantly savings, checking;
@ ensures savings.equals(sav) && checking.equals(chk)
¢ && owner.equals(own) ;
@ ensures_redundantly credit.equals(sav.plus(chk));
Qx/

public PlusAccount(MoneyOps sav, MoneyOps chk, String own);

/*@ also
@ public normal_behavior
Q old boolean can_scale = credit.can_scaleBy(1.0 + rate);
Q requires 0.0 <= rate && rate <= 1.0
Q && can_scale;
@ assignable credit, savings, checking;
@ ensures checking.equals(
¢ \old(checking) .scaleBy(1.0 + rate));
@ for_example
@ public normal_example
@ requires rate == 0.05
@ && checking.equals(new USMoney(2000)) ;
@ assignable credit, savings, checking;
Q@ ensures checking.equals(new USMoney(2100)) ;
ox/
public void payInterest(double rate);

/%@ also
@ public normal_behavior
@ requires amt != null

o1

Chapter 2: Class and Interface Specifications 52

&& (new USMoney(0)) .lessThanOrEqualTo (amt)
&& amt.lessThanOrEqualTo (savings);
assignable credit, savings;
ensures savings.equals(\old(savings) .minus(amt))
&% \not_modified(checking);

also
public normal_behavior
requires amt != null

&& (new USMoney(0)) .lessThanOrEqualTo (amt)
&& amt.lessThanOrEqualTo(credit)
&& amt.greaterThan(savings) ;
assignable credit, savings, checking;
ensures savings.equals(new USMoney(0))
&& checking.equals(
\old(checking) .minus (amt.minus (savings)));
for_example
public normal_example
requires savings.equals(new USMoney(40001))
&& amt.equals(new USMoney(40000)) ;
assignable credit, savings, checking;
ensures savings.equals(new USMoney (1))
&& \not_modified(checking);
also
public normal_example
requires savings.equals(new USMoney(30001))
&& checking.equals(new USMoney(10000))
&& amt.equals(new USMoney(40000));
assignable credit, savings, checking;
ensures savings.equals(new USMoney(0))
&& checking.equals(new USMoney(1));

@ © © © © 0 O O B OO O O O L O O 0 © B O 0 © O © ©

@x/
public void withdraw(MoneyOps amt);

/*@ also
@ public normal_behavior

0ld boolean can_add = credit.can_add(amt);
requires amt != null
&& amt.greaterThanOrEqualTo(new USMoney(0))
&& can_add;

assignable credit, savings;
ensures savings.equals(\old(savings).plus(amt))
&& \not_modified(checking);
for_example
public normal_example
requires savings.equals(new USMoney(20000))
&& amt.equals(new USMoney(1));
assignable credit, savings, checking;

@ © © © © © 0 b O 0 b

Chapter 2: Class and Interface Specifications 53

Q ensures savings.equals(new USMoney(20001));
Qx/
public void deposit(MoneyOps amt) ;

/*@ public normal_behavior
old boolean can_add = credit.can_add(amt);
requires amt != null
&& amt.greaterThanOrEqualTo(new USMoney(0))
&& can_add;
assignable credit, checking;
ensures checking.equals(\old(checking) .plus(amt))
&& \not_modified(savings);
for_example
public normal_example
requires checking.equals(new USMoney(20000))
&& amt.equals(new USMoney(1));
assignable credit, checking;
ensures checking.equals(new USMoney(20001));

@ © © © © © © © © © © © ©

@x/
public void depositToChecking(MoneyOps amt);

/*@ public normal_behavior
@ requires amt != null;
{l
requires (new USMoney(0)).lessThanOrEqualTo(amt)
&& amt.lessThanOrEqualTo(checking) ;
assignable credit, checking;
ensures checking.equals(\old(checking) .minus (amt))
&% \not_modified(savings) ;
also
requires (new USMoney(0)).lessThanOrEqualTo(amt)
&& amt.lessThanOrEqualTo(credit)
&& amt.greaterThan(checking) ;
assignable credit, checking, savings;
ensures checking.equals(new USMoney(0))
&& savings.equals(
\old(savings) .minus (amt .minus (checking))) ;
(s
for_example
public normal_example
requires checking.equals(new USMoney(40001))
&& amt.equals(new USMoney(40000));
assignable credit, checking;
ensures checking.equals(new USMoney(1))
&& \not_modified(savings);
also
public normal_example

@ © © © © © O 0 O O O L O O O b B 0 © © b © ©

Chapter 2: Class and Interface Specifications 54

requires savings.equals(new USMoney(30001))
&& checking.equals(new USMoney(10000))
&& amt.equals(new USMoney(40000));
assignable credit, checking, savings;
ensures checking.equals(new USMoney(0))
&& savings.equals(new USMoney(1));

©@ © © © © ©

@x/
public void payCheck(MoneyOps amt);
}

Similarly, if one tried to respecify a method in a way that violated an (inherited) spec-
ification case, then the method would have to obey both specifications, and would not be
correctly implementable. Thus, specification inheritance guarantees that all subtypes are
behavioral subtypes in JML, and trying to avoid behavioral subtyping results in unimple-
mentable specifications Dhara-Leavens96.

Note that in the represents clause below, instead of a left-facing arrow, <-, the connective
“\such_that” is used to introduce a relationship predicate. This form of the represents
clause allows one to specify abstraction relations, instead of abstraction functions.

Chapter 3: Extensions to Java Expressions 55

3 Extensions to Java Expressions

JML makes extensions to the Java expression syntax for two purposes. The main set of
extensions are used in predicates. But there are also some extensions used in store-refs,
which are themselves used in the assignable and represents clauses.

We give an overview of these extensions in this section. However, we only describe the
most important and useful extensions here. See the JML Reference Manual [Leavens-etal-
JMLRef] for more extensions and for more detail.

3.1 Extensions to Java Expressions for Predicates

The expressions that can be used as predicates in JML are an extension to the side-effect
free Java expressions. Since predicates are required to be side-effect free, the following Java
operators are not allowed within predicates:

assignment (=), and the various assignment operators (such as +=, -=, etc.)

all forms of increment and decrement operators (++ and --),

calls to methods that are not pure, and

e any use of operator new that would call a constructor that is not pure.

Furthermore, within method specifications that are not model programs, one cannot use
super to call a pure superclass method, because it is confusing in combination with JML’s
specification inheritance.!

We allow the allocation of storage (e.g., using operator new and pure constructors)
in predicates, because such storage can never be referred to after the evaluation of the
predicate, and because such pure constructors have no side-effects other than initializing
the new objects so created.

JML adds the following new syntax to the Java expression syntax, for use in predi-
cates (see the JML Reference Manual [Leavens-etal-JMLRef] for syntactic details such as
precedence):

e Informal descriptions, which look like
(* some text describing a Boolean-valued predicate *)

have type boolean. Their meaning is either true or false, but is entirely determined
by the reader. Since informal descriptions are not-executable, they may be treated
differently by different tools in different situations.

e ==> and <== for logical implication and reverse implication. For example, the formula
raining ==> getsWet is true if either raining is false or getsWet is true. The formula
getsWet <== raining means the same thing. The ==> operator associates to the right,
but the <== operator associates to the left. The expressions on both sides of these
operators must be of type boolean, and the type of the result is also boolean.

e <==> and <=!=> for logical equivalence and logical inequivalence, respectively. The
expressions on either side of these operators must be of type boolean, and the type of

Suppose A is the superclass of B, and B is the superclass of C. Suppose B’s specification used super
to call a method of A. The problem is that when this specification is inherited by C, if we imagine
copying B’s specification to C| then this use of super no longer refers to A, but to B. Thanks to Arnd
Poetzsch-Heffter for pointing out this problem.

Chapter 3: Extensions to Java Expressions 56

the result is also boolean. Note that <==> means the same thing as == for expressions of
type boolean, and <=!=> means the same thing as != for boolean expressions; however,
<==> and <=!=> have a much lower precedence, and are also associative and symmetric.

e \forall and \exists, which are universal and existential quantifiers (respectively);

for example,
(\forall int i,j; 0 <=1 && i < j && j < 10; alil < a[j])

says that a is sorted at indexes between 0 and 9. The quantifiers range over all potential
values of the variables declared which satisfy the range predicate, given between the
semicolons (;). If the range predicate is omitted, it defaults to true. Since a quantifier
quantifies over all potential values of the variables, when the variables declared are
reference types, they may be null, or may refer to objects not constructed by the
program; one should use a range predicate to eliminate such cases if they are not
desired. The type of a universal and existential quantifier is boolean.

e \max, \min, \product, and \sum, which are generalized quantifiers that return the
maximum, minimum, product, or sum of the values of the expressions given, where the
variables satisfy the given range. The range predicate must be of type boolean. The
expression in the body must be a built-in numeric type, such as int or double; the type
of the quantified expression as a whole is the type of its body. The body of a quantified
expression is the last top-level expression it contains; it is the expression following the
range predicate, if there is one. As with the universal and existential quantifiers, if the
range predicate is omitted, it defaults to true. For example, the following equations
are all true (see chapter 3 of [Cohen90]):

(\sum int i; 0 <= i & i < 5; i) == 0+ 1+ 2 + 3 + 4

(\product int i; 0 < i & i < 5; i) == 1 * 2 * 3 * 4

(\max int i; 0 <= i && i < 5; i) ==

(\min int i; 0 <= i && i < 5; i-1) == -1
For computing the value of a sum or product, Java’s arithmetic is used. The meaning
thus depends on the type of the expression. For example, in Java, floating point
numbers use the IEEE 754 standard, and thus when an overflow occurs, the appropriate
positive or negative infinity is returned. However, Java integers wrap on overflow.
Consider the following examples.

(\product float f; 1.0e30f < f && f < 1.0e38f; f)
== Float.POSITIVE_INFINITY

(\sum int i; i == Integer .MAX_VALUE || i == 1; i)
== Integer .MAX_VALUE + 1
== Integer .MIN_VALUE

When the range predicate is not satisfiable, the sum is 0 and the product is 1; for
example:

(\sum int i; false; i) ==

(\product double d; false; d*d) == 1.0
When the range predicate is not satisfiable for \max the result is the smallest number
with the type of the expression in the body; for floating point numbers, negative infinity
is used. Similarly, when the range predicate is not satisfiable for \min, the result is the
largest number with the type of the expression in the body.

Chapter 3: Extensions to Java Expressions 57

e \num_of, which is “numerical quantifier.” It returns the number of values for its
variables for which the range and the expression in its body are true. Both the range
predicate and the body must have type boolean, and the entire quantified expression
has type long. The meaning of this quantifier is defined by the following equation (see
p. 57 of [Cohen90]).

(\num_of T x; R(x); P(x)) == (\sum T x; R(x) && P(x); 1L)

e Set comprehensions, which can be used to succinctly define sets; for example, the
following is the JMLObjectSet that is the subset of non-null Integer objects found in
the set myIntSet whose values are between 0 and 10, inclusive.

new JMLObjectSet {Integer i | myIntSet.has(i)
&% i !'= null && O <= i.getInteger()
&& i.getInteger() <= 10 }

The syntax of JML (see the JML Reference Manual [Leavens-etal-JMLRef] for details)
limits set comprehensions so that following the vertical bar (‘|’) is always an invocation
of the has method of some set on the variable declared. (This restriction is used to
avoid Russell’s paradox [Whitehead-Russell25].) In practice, one either starts from
some relevant set at hand, or one can start from the sets containing the objects of
primitive types found in org. jmlspecs.models.JMLModelObjectSet and (in the same
Java package) JMLModelValueSet. The type of such an expression is the type named
following new, which must be JMLObjectSet or JMLValueSet.

e \elemtype, which returns the most-specific static type shared by all elements of its
array argument [Leino-Nelson-Saxe00]. For example, \elemtype (\type(int[])) is
\type(int). The argument to \elemtype must be an expression of type \TYPE, which
JML considers to be the same as java.lang.Class, and its result also has type \TYPE.
If the argument is not an array type, the result is null.

e \fresh, which asserts that objects were freshly allocated; for example, \fresh(x,y)
asserts that x and y are not null and that the objects bound to these identifiers were
not allocated in the pre-state. The arguments to \fresh can have any reference type,
and the type of the overall expression is boolean.?

e \nonnullelements, which can be used to assert that an array and its elements are all
non-null. For example, \nonnullelements (myArray), is equivalent to [Leino-Nelson-
Saxe00]

myArray != null &&
(\forall int i; 0 <= i && i < myArray.length;
myArray[i] !'= null)

e \old, which can be used to refer to values in the pre-state; e.g., \old (myPoint.x) is the
value of the x field of the object myPoint in the pre-state. The type of such an expression
is the type of the expression it contains; for example the type of \old(myPoint.x) is
the type of myPoint.x. The keyword \old can only be used in an ensures-clause, a
signals-clause, or a history-constraint; it cannot be used, for example, in preconditions.

e \result, which, in an ensures clause is the value or object that is being returned
by a method. Its type is the return type of the method; hence it is a type error to

2 Note that it is wrong to use \fresh(this) in the specification of a constructor, because Java’s new

operator allocates storage for the object; the constructor’s job is just to initialize that storage.

Chapter 3: Extensions to Java Expressions 58

use \result in a void method or in a constructor. The keyword \result can only be
used in an ensures-clause; it cannot be used, for example, in preconditions or in signals
clauses.

e \typeof, which returns the most-specific dynamic type of an expression’s value [Leino-
Nelson-Saxe00]. The meaning of \typeof (£) is unspecified if £ is null. If F has
a static type that is a reference type, then \typeof (F) means the same thing as
E .getClass(). For example, if c is a variable of static type Collection that holds
an object of class HashSet, then \typeof(c) is HashSet.class, which is the same
thing as \type(HashSet). If E has a static type that is not a reference type, then
\typeof (£) means the instance of java.lang.Class that represents its static type.
For example, \typeof (true) is Boolean.TYPE, which is the same as \type (boolean).
Thus an expression of the form \typeof (£) has type \TYPE, which JML considers to
be the same as java.lang.Class.

e <:, which compares two reference types and returns true when the type on the left is a
subtype of the type on the right [Leino-Nelson-Saxe00]. Although the notation might
suggest otherwise, this operator is also reflexive; a type will compare as <: with itself.
In an expression of the form E1 <: E2, both E1 and F2 must have type \TYPE; since
in JML \TYPE is the same as java.lang.Class the expression F1 <: E2 means the
same thing as the expression £2.isAssignableFrom(£1).

e \type, which can be used to mark types in expressions. An expression of the form
\type(T) has the type \TYPE. Since in JML \TYPE is the same as java.lang.Class,
an expression of the form \type (7T) means the same thing as T'.class. For example,
in

\typeof (my0bj) <: \type(PlusAccount)

the use of \type (PlusAccount) is used to introduce the type PlusAccount into this
expression context.

To avoid referring to the value of uninitialized locations, a constructor’s precondition
can only refer to locations in the object being constructed that are not assignable. This
allows a constructor to refer to instance fields of the object being constructed if they are
not made assignable by the constructor’s assignable clause, for example, if they are declared
with initializers. In particular, the precondition of a constructor may not mention a “blank
final” instance variable that it must assign.

Since we are using Java expressions for predicates, there are some additional problems in
mathematical modeling. We are excluding the possibility of side-effects by limiting the syn-
tax of predicates, and by using type checking [Gifford-Lucassen86] [Lucassen87] [Lucassen-
Gifford88] [Nielson-Nielson-Amtoft97] [Talpin-Jouvelot94] [Wright92] to make sure that only
pure methods and constructors may be called in predicates.

Exceptions in expressions are particularly important, since they may arise in type casts.
JML deals with exceptions by having the evaluation of predicates substitute an arbitrary
expressible value of the normal result type when an exception is thrown during evaluation.
When the expression’s result type is a reference type, an implementation would have to
return null if an exception is thrown while executing such a predicate. This corresponds
to a mathematical model in which partial functions are mathematically modeled by under-
specified total functions [Gries-Schneider95]. However, tools sometimes only approximate
this semantics. In tools, instead of fully catching exceptions for all subexpressions, many

Chapter 3: Extensions to Java Expressions 59

tools only catch exceptions for the smallest boolean-valued subexpression that may throw an
exception (and for entire expressions used in JML’s measured-clause and variant-function).

JML will check that errors (i.e., exceptions that inherit from Error) are not explicitly
thrown by pure methods. This means that they can be ignored during mathematical mod-
eling. When executing predicates, errors will cause run-time errors.

3.2 Extensions to Java Expressions for Store-Refs

The grammatical production store-ref (see the JML Reference Manual [Leavens-etal-
JMLRef] for the exact syntax) is used to name locations in the assignable and
represents clauses. A store-ref names a location, not an object; a location is either a
field of an object, or an array element. Besides the Java syntax of names and field and
array references, JML supports the following syntax for store-refs. See the JML Reference
Manual [Leavens-etal-JMLRef] for more details on the syntax.

e Array ranges, of the form A[F1 .. E2], denote the locations in the array A between
the value of E1 and the value of E2 (inclusive). For example, the clause

assignable myArray[3 .. 5]
can be thought of an abbreviation for the following.
assignable myArray[3], myArray[4], myArray[5]

e One can also name all the indexes in an array A by writing, A [*], which is shorthand
for A[0O .. A.length-1].

e Two notations allow one to refer to the fields in some particular object.

- The syntax x.* names all of the non-static fields of the object referred to by .
For example, if p is a Point object with two fields, x and y of type BigInteger,
then p.* names the fields p.x and p.y. Notice that the fields of the BigInteger
objects are not named. Also, p.*.x* is not allowed.

- If a is an array of type Rocket [], then the store-ref a[*].* means all of the
non-static fields of each Rocket object referred to by the elements of array a.

Chapter 4: Conclusions 60

4 Conclusions

One area of future work for JML is concurrency. Some recent work by Rodriguez et al.
[Rodriguez-etal05] has investigated the use of atomicity for specifying multi-threaded Java
programs. However, these ideas are not yet implemented in most of the JML tools, and
their use has not been fully explored.

JML has also been used as a research vehicle in a wide variety of other studies various pa-
pers on these ideas can be found through the JML web page ‘http://www. jmlspecs.org/’.

JML is an expressive behavioral interface specification language for Java. It combines
the best features of the Eiffel and Larch approaches to specification. It allows one to write
specifications that are quite precise and detailed, but also allows one to write lightweight
specifications. It has examples and other forms of redundancy to allow for debugging speci-
fications and for making rhetorical points. It supports behavioral subtyping by specification
inheritance.

More information on JML, including software to aid in working with JML specifications,
can be obtained from ‘http://www.jmlspecs.org/’. The JML web site also includes an
up-to-date version of this document with a table of contents and an index.

Acknowledgments

The work of Leavens and Ruby was supported in part by a grant from Rockwell International
Corporation and by NSF grant CCR-9503168. Work on JML by Leavens, Baker, and Ruby
was also supported in part by NSF grant CCR-9803843. Work on JML by Leavens, Ruby,
and others is supported in part by NSF grants CCR-0097907,CCR-0113181, CCF-0428078,
and CCF-0429567.

Many people have helped with the semantics and design of JML, and on this document.
Thanks to Yoonsik Cheon, David Cok, Bart Jacobs, Rustan Leino, Peter Miiller, Erik Poll,
Arnd Poetzsch-Heffter, and Joachim van den Berg, for many discussions about the seman-
tics of JML specifications. Thanks to Raymie Stata for spear-heading an effort at Compaq
SRC to unify JML and ESC/Java, and to Rustan and Raymie for many interesting ideas
and discussions that have profoundly influenced JML. For comments on earlier drafts and
discussions about JML thanks to Yoonsik, Bart, Rustan, Peter, Eric, Joachim, Raymie,
Abhay Bhorkar, Patrice Chalin, Curtis Clifton, John Boyland, Martin Biichi, Peter Chan,
David Cok, Gary Daugherty, Jan Docxx, Marko van Dooren, Stephen Edwards, Michael
Ernst, Arthur Fleck, Karl Hoech, Marieke Huisman, Anand Ganapathy, Doug Lea, Claude
Marche, Kristof Mertens, Yogy Namara, Sevtap Oltes, Arnd Poetzsch-Heffter, Jim Potts,
Arun Raghavan, Alexandru D. Salcianu, Jim Saxe, Tammy Scherbring, Tim Wahls, Wolf-
gang Weck, and others we may have forgotten. Thanks to David Cok, Yoonsik Cheon,
Curtis Clifton, Patrice Chalin, Abhay Bhorkar, Kristina Boysen, Tongjie Chen, Kui Dali,
Werner Dietl, Marko van Dooren, Anand Ganapathy, Yogy Namara, Todd Millstein, Arun
Raghavan, Frederic Rioux, Roy Tan, and Hao Xi for their work on the JML checker and
tools used to check and manipulate the specifications in this document. Thanks to Katie
Becker, Kristina Boysen, Brandon Shilling, Elizabeth Seagren, Ajani Thomas, and Arthur
Thomas for help with case studies and specifications in JML. Thanks to David Cok, Joe
Kiniry, Yoonsik Cheon, Kristina Boysen, Curtis Clifton, Judy Chan Wai Ting, Peter Chan,
Marko van Dooren, Kui Dai, Fermin da Costa Gomez, Joseph Kiniry, Roy Patrick Tan,

Chapter 4: Conclusions 61

and Julien Vermillard for bug reports about JML tools. Thanks to the students in 22C:181
at the University of lowa in Spring 2001, and in Com S 362 at Iowa State University for
suggestions and comments about JML.

Appendix A: Specification Case Defaults 62

Appendix A Specification Case Defaults

As noted above (see Section 1.2 [Lightweight Specifications], page 5), specifications in JML
do not need to be as detailed as most of the examples given in this document. If a spec-case
does not use one of the behavior keywords (behavior, normal_behavior, or exceptional _
behavior), or if an example does not use one of the example keywords (example, normal_
example, exceptional_example), then it is called a lightweight specification or example.
Otherwise it is a heavyweight specification or example.

When the various clauses of a spec-case or example are omitted, they have the defaults
given in the table below. The table distinguishes between lightweight and heavyweight
specifications and examples. In most cases the default for the lightweight form is that no
assumption is made about the omitted clause. There are only two exceptions to this rule.
The first is that for an omitted diverges clause defaults to false. The second is that
an omitted signals_only has a default that depends on the exceptions declared in the
method.

Default
Omitted clause 1lightweight heavyweight
requires \not_specified true
diverges false false
measured_by \not_specified \not_specified
assignable \not_specified \everything
when \not_specified true
working_space \not_specified \not_specified
duration \not_specified \not_specified
ensures \not_specified true
signals_only see text see text
signals \not_specified (Exception) true

However, in a heavyweight specification or example, the specifier is assumed to be giving
a complete specification or example. Therefore, in a heavyweight specification the meaning
of an omitted clause is given a definite default. For example, the meaning of an omitted
assignable clause is that all locations (that can otherwise be legally assigned to) can
be assigned. Furthermore, in a non-lightweight specification, the meaning of an omitted
diverges clause is that the method may not diverge in that case. (The diverges clause is
almost always omitted; it can be used to say what should be true, of the pre-state, when
the specification is allowed to loop forever or signal an error.)

The defaults for omitted signals_only and signals clauses do not apply to normal_
behavior specification cases, since normal_behavior specification cases cannot contain
these clauses.

The default for the signals_only clause is the same in both heavyweight and lightweight
specifications, but depends on the list of exceptions declared in the method. If the method
declares no exceptions, then the default clause is signals_only \nothing; (which means
that the method cannot throw any exceptions). However, if the method header declares
that the method may throw exceptions DEI1, ..., DEn, then the default signals_only
clause is as follows.

Appendix A: Specification Case Defaults 63

signals_only DE1, ..., DEn

This default applies whenever the signals_only clause is omitted from a specification
case, even if the method has a signals clause. If this default is too strong, the effect
can be changed by either writing an explicit signals_only clause, or by declaring further
exceptions in the method’s header. Note that although Java allows runtime exceptions
(subtypes of java.lang.RuntimeException) to be thrown without being declared in a
method’s header, JML does not take make a special case for these.

A completely omitted specification is taken to be a lightweight specification. If the
default (zero-argument) constructor of a class is omitted because its code is omitted, then
its specification defaults to an assignable clause that allows all the locations that the default
(zero-argument) constructor of its superclass assigns — in essence a copy of the superclass’s
default constructor’s assignable clause. If some other frame is desired, then one has to write
the specification, or at least the code, explicitly.

A method or constructor with code present has a completely omitted specification if it
has no specification-cases and does not use annotations like non_null or pure that add
implicit specifications.

If a method or constructor has code, has a completely omitted specification, and does
not override another method, then its meaning is taken as the lightweight specification
diverges \not_specified;. Thus, its meaning can be read from the lightweight column
of table above, except that the diverges clause is not given its usual default. This is done
so that the default specification when no specification is given truly says nothing about the
method’s behavior. However, if a method with code and a completely omitted specification
overrides some other method, then its meaning is taken to be the lightweight specification
also requires false;. This somewhat counter-intuitive specification is the unit under
specification conjunction with also; it is used so as not to change the meaning of the
inherited specification.

If the code is annotated with keywords like non_null or pure that add implicit specifi-
cations, then these implicit specifications are used instead of the default. Code with such
annotations is considered to have an implicit specification.

It is intended that the meaning of \not_specified may vary between different uses
of a JML specification. For example, a static checker might treat a requires clause that
is \not_specified as if it were true, while a verification logic might treat it as if it
were false. However, a reasonable default for the interpretation for \not_specified in
a lightweight specification is the most liberal possible (i.e., the one that permits the most
correct implementations); this is generally the same as the heavyweight default, except for
the diverges clause (where the most liberal interpretation would be true).

Note that specification statements (see the JML Reference manual [Leavens-etal-
JMLRef] for details) cannot be lightweight. In addition, a spec-statement can specify
abrupt termination. The additional clauses possible in a spec-statement have the following
defaults. These are not liberally interpreted, but instead prohibit the statement from
having abrupt behavior by default.

Default
Omitted clause (heavyweight)

Appendix A: Specification Case Defaults

breaks false
returns false

64

Bibliography 65

Bibliography

[Arnold-Gosling-Holmes00)]
Ken Arnold, James Gosling, and David Holmes. The Java Programming Lan-
guage Third Edition. The Java Series. Addison-Wesley, Reading, MA, 2000.

[America87]
Pierre America. Inheritance and subtyping in a parallel object-oriented lan-
guage. In Jean Bezivin et al., editors, ECOOP 87, European Conference on
Object-Oriented Programming, Paris, France, pages 234-242, New York, NY,
June 1987. Springer-Verlag. Lecture Notes in Computer Science, volume 276.

[America91]
Pierre America. Designing an object-oriented programming language with be-
havioural subtyping. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
editors, Foundations of Object-Oriented Languages, REX School/Workshop,
Noordwijkerhout, The Netherlands, May/June 1990, volume 489 of Lecture
Notes in Computer Science, pages 60-90. Springer-Verlag, New York, NY,
1991.

[Back88] R. J. R. Back. A calculus of refinements for program derivations. Acta Infor-
matica, 25(6):593-624, August 1988.

[Back-vonWright89a]
R. J. R. Back and J. von Wright. Refinement Calculus, Part I: Sequential
Nondeterministic Programs. In J. W. de Bakker, et al, (eds.), Stepwise Refine-
ment of Distributed Systems, Models, Formalisms, Correctness, REX Work-
shop, Mook, The Netherlands, May/June 1989, pages 42-66. Volume 430 of
Lecure Notes Computer Science, Spring-Verlag, 1989.

[Back-Mikhajlova-vonWright98]
Ralph Back, Anna Mikhajlova, and Joakim von Wright. Modeling component
environments and interactive programs using iterative choice. Technical Report
200, Turku Centre for Computer Science, September 1998.
‘http://www.tucs.abo.fi/publications/techreports/TR200.html .

[Back-vonWright98]
Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Springer-Verlag, 1998.

[Beck-Gamm98]
Kent Beck and Erich Gamma. Test infected: Programmers love writing tests.
Java Report, 3(7), July 1998.

[Buechi-Weck00]
Martin Biichi and Wolfgang Weck. The Greybox Approach: When Blackbox
Specifications Hide Too Much. Technical Report 297, Turku Centre for Com-
puter Science, August 1999.
‘http://www.tucs.abo.fi/publications/techreports/TR297.html’.

Bibliography 66

[Borgida-Mylopoulos-Reiter95]

[Chalin02]

[Chalin04]

[Cheon03]

Alex Borgida, John Mylopoulos, and Raymond Reiter. On the frame prob-
lem in procedure specifications. IEEE Transactions on Software Engineering,
21(10):785-798, October 1995.

Back to Basics: Language Support and Semantics of Basic Infinite Integer Types
in JML and Larch Technical Report CU-CS 2002-003.2, Computer Science De-
partment, Concordia University, October 2002. Updated March 2003, which is
available from the URL
‘http://www.cs.concordia.ca/"chalin/papers/TR-2002-003.pdf’ .

Patrice Chalin. JML Support for Primitive Arbitrary Precision Numeric Types:
Definition and Semantics. Journal of Object Technology, 3(6):57-79, June 2004.

Yoonsik Cheon. A runtime assertion checker for the Java Modeling Language.
Technical Report 03-09, Department of Computer Science, lowa State Univer-
sity, Ames, [A, April 2003. The author’s Ph.D. dissertation, which is available
from the URL
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR03-09/TR.pdf’.

[Cheon-Leavens02]

Yoonsik Cheon and Gary T. Leavens. A Simple and Practical Approach to
Unit Testing: The JML and JUnit Way. In ECOOP 2002 — Object-Oriented
Programming, 16th European Conference, Malaga, Spain, pages 231-255.
Springer-Verlag, June 2002. Also Department of Computer Science, lowa
State University, TR #01-12a, November 2001, revised March 2002 which is
available from the URL
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR0O1-12/TR.pdf’ .

[Cheon-Leavens02b]

Yoonsik Cheon and Gary T. Leavens. A Runtime Assertion Checker for the
Java Modeling Language (JML). In Hamid R. Arabnia and Youngsong Mun
(eds.), Proceedings of the International Conference on Software Engineering
Research and Practice (SERP ’02), Las Vegas, Nevada, USA, pages 322-328.
CSREA Press, June 2002. Also Department of Computer Science, lowa State
University, TR #02-05, March 2002 which is available from the URL
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR02-05/TR.pdf’ .

[Cheon-Leavens05]

[Cohen90)]

[Chalin02]

Yoonsik Cheon and Gary T. Leavens. A contextual interpretation of unde-
finedness for runtime assertion checking. In AADEBUG 2005, Proceedings of
the Sixth International Symposium on Automated and Analysis-Driven Debug-
ging, Monterey, California, September 19-21, 2005, pages 149-157. ACM Press,
September 2005.

Edward Cohen. Programming in the 1990s: An Introduction to the Calculation
of Programs. Springer-Verlag, New York, N.Y., 1990.

Patrice Chalin. Back to Basics: Language Support and Semantics of Basic
Infinite Integer Types in JML and Larch. Computer Science Department,
Concordia University, Technical Report CU-CS 2002-003.1. Available in
‘http://tinyurl.com/ebq6g’, October, 2002.

Bibliography 67

[Dhara-Leavens96]

Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping
through specification inheritance. In Proceedings of the 18th International
Conference on Software Engineering, Berlin, Germany, pages 258-267. IEEE
Computer Society Press, March 1996. An extended version is Department of
Computer Science, lowa State University, TR #95-20b, December 1995, which
is available from the URL
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR95-20/TR.ps.Z’.

[Ernst-etal01]
Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin Dy-
namically Discovering Likely Program Invariants to Support Program Evolution
IEEE Transactions on Software Engineering, 27(2):1-25, February 2001.

[Finney96] Kate Finney. Mathematical notation in formal specification: Too difficult for
the masses? IEEE Transactions on Software Engineering, 22(2):158-159, Febru-
ary 1996.

[Fitzgerald-Larsen98]
John Fitzgerald and Peter Gorm Larsen. Modelling Systems: Practical Tools

and Techniques in Software Development. Cambridge University Press, Cam-
bridge, UK, 1998.

[Gifford-Lucasseng6]
David K. Gifford and John M. Lucassen. Integrating functional and imperative

programming. In ACM Conference on LISP and Functional Programming,
pages 28-38. ACM, August 1986.

[Gosling-Joy-Steele96]
James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
The Java Series. Addison-Wesley, Reading, MA, 1996.

[Gosling-etal00]
James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification Second Edition. The Java Series. Addison-Wesley, Boston, MA,
2000.

[Gries-Schneider95]
David Gries and Fred B. Schneider. Avoiding the Undefined by Underspecifi-
cation. In Jan van Leeuwen, editor, Computer Science Today: Recent Trends

and Developments, volume 1000 of Lecture Notes in Computer Science, pages
366-373. Springer-Verlag, New York, N.Y., 1995.

[Guttag-Horning93|
John V. Guttag, James J. Horning, S.J. Garland, K.D. Jones, A. Modet, and
J.M. Wing. Larch: Languages and Tools for Formal Specification. Springer-
Verlag, New York, N.Y., 1993.

[Hayes93] 1. Hayes, editor. Specification Case Studies. International Series in Computer
Science. Prentice-Hall, Inc., second edition, 1993.

[Hoare69] C. A. R. Hoare. An axiomatic basis for computer programming. Communica-
tions of the ACM, 12(10):576-583, October 1969.

Bibliography 68

[Hoare72a|
C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
(4):271-281, 1972.

[Huisman01]
Marieke Huisman. Reasoning about JAVA programs in higher order logic with
PVS and Isabelle. IPA dissertation series, 2001-03. Ph.D. dissertation, Univer-
sity of Nijmegen, 2001.

[ISO96] International Standards Organization. Information Technology - Programming
Languages, Their Environments and System Software Interfaces - Vienna Devel-
opment Method - Specification Language - Part 1: Base language. International
Standard ISO/IEC 13817-1, December, 1996.

[Jacobs-etal98]
Bart Jacobs, Joachim van den Berg, Marieke Huisman Martijn van Berkum,
Ulrich Hensel, and Hendrik Tews. Reasoning about Java Classes (Preliminary
Report). In OOPSLA ’98 Conference Proceedings, volume 33, number 10 of
ACM SIGPLAN Notices, pages 329-340. October 1998.

[Jones90] Cliff B. Jones. Systematic Software Development Using VDM. International Se-
ries in Computer Science. Prentice Hall, Englewood Cliffs, N.J., second edition,
1990.

[Jonkers91|
H. B. M. Jonkers. Upgrading the pre- and postcondition technique. In S. Prehn
and W. J. Toetenel, editors, VDM 91 Formal Software Development Methods
4th International Symposium of VDM Europe Noordwijkerhout, The Nether-
lands, Volume 1: Conference Contributions, volume 551 of Lecture Notes in
Computer Science, pages 428-456. Springer-Verlag, New York, N.Y., October
1991.

[Lano-Haughton94]
K. Lano and H. Haughton, editors. Object-Oriented Specification Case Studies.
The Object-Oriented Series. Prentice Hall, New York, N.Y., 1994.

[Leavens96b]
Gary T. Leavens. An overview of Larch/C++: Behavioral specifications for
C++ modules. In Haim Kilov and William Harvey, editors, Specification of Be-
havioral Semantics in Object-Oriented Information Modeling, chapter 8, pages
121-142. Kluwer Academic Publishers, Boston, 1996. An extended version is
TR #96-01d, Department of Computer Science, lowa State University, Ames,
Towa, 50011.

[Leavens97c]
Gary T. Leavens. Larch/C++ Reference Manual. Version 5.14. Available in
‘http://www.eecs.ucf.edu/"leavens/larchc++.html’, October 1997.

[LeavensLarchFAQ)]

Gary T. Leavens. Larch frequently asked questions. Version 1.110. Available
in ‘http://www.eecs.ucf.edu/ leavens/larch-faq.html’, May 2000.

Bibliography 69

[Leavens-etal-JMLRef]
Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David
Cok, Peter Miiller, and Joseph Kiniry. JML Reference Manual. Available from
‘http://www.jmlspecs.org/’.

[Leavens-Baker99]
Gary T. Leavens and Albert L. Baker. Enhancing the pre- and postcondition
technique for more expressive specifications. In Jeannette M. Wing, Jim Wood-
cock, and Jim Davies, editors, FM’99 — Formal Methods: World Congress on
Formal Methods in the Development of Computing Systems, Toulouse, France,
September 1999, Proceedings, volume 1709 of Lecture Notes in Computer Sci-
ence, pages 1087-1106. Springer-Verlag, 1999.

[Leavens-Baker-Ruby99]
Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: a Notation for
Detailed Design. In Haim Kilov, Bernhard Rumpe, and Tan Simmonds (editors),
Behavioral Specifications for Businesses and Systems, chapter 12, pages 175-
188.

[Leavens-Weihl95]
Gary T. Leavens and William E. Weihl. Specification and verification of object-
oriented programs using supertype abstraction. Acta Informatica, 32(8):705—
778, November 1995.

[Leavens-Wing97al
Gary T. Leavens and Jeannette M. Wing. Protective interface specifications. In
Michel Bidoit and Max Dauchet, editors, TAPSOFT ’97: Theory and Practice
of Software Development, 7th International Joint Conference CAAP/FASE,
Lille, France, volume 1214 of Lecture Notes in Computer Science, pages 520—
534. Springer-Verlag, New York, N.Y., 1997.

[Ledgard80)]
Henry. F. Ledgard. A human engineered variant of BNF. ACM SIGPLAN
Notices, 15(10):57-62, October 1980.

[Leino95a] K. Rustan M. Leino. A myth in the modular specification of programs. Techni-
cal Report KRML 63, Digital Equipment Corporation, Systems Research Cen-
ter, 130 Lytton Avenue Palo Alto, CA 94301, November 1995. Obtain from the
author, at leino@microsoft.com.

[Leino95] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, Califor-
nia Institute of Technology, 1995. Available as Technical Report Caltech-CS-
TR-95-03.

[Leino98] K. Rustan M. Leino. Data groups: Specifying the modification of extended
state. In OOPSLA 98 Conference Proceedings, pp. 144-153. Volume 33,
number 10 of ACM SIGPLAN Notices, October, 1998.

[Leino-Nelson-Saxe00]
K. Rustan M. Leino, Greg Nelson, and James B. Saxe. ESC/Java User’s Man-
ual. Compaq SRC Technical Note 2000-02, October, 2000.

Bibliography 70

[Leino-Poetzsch-Heffter-Zhou02]
Using Data Groups to Specify and Check Side Effects. Proceedings of the ACM
SIGPLAN 2002 Conference on Programming Language Design and Implemen-
tation (PLDI °02), pp. 246-257. Volume 37, number 5 of ACM SIGPLAN
Notices, June, 2002.

[Leino-etal00]
K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended Static Checking. Web page at
‘http://research.compaq.com/SRC/esc/Esc.html’.

[Lerner91] Richard Allen Lerner. Specifying objects of concurrent systems. Ph.D. Thesis
CMU-CS-91-131, School of Computer Science, Carnegie Mellon University, May
1991.

[Liskov-Wing94]
Barbara Liskov and Jeannette Wing. A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems, 16(6):1811-1841,
November 1994.

[Lucassen87]
John M. Lucassen. Types and effects: Towards the integration of functional and
imperative programming. Technical Report TR-408, Massachusetts Institute of
Technology, Laboratory for Computer Science, August 1987.

[Lucassen-Gifford88|
John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Con-
ference Record of the Fifteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, San Diego, Calif., pages 47-57. ACM, January 1988.

[Luckham-vonHenke85]
David Luckham and Friedrich W. von Henke. An overview of Anna - a specifi-
cation language for Ada. IEEE Software, 2(2):9-23, March 1985.

[Luckham-etal87]
David Luckham, Friedrich W. von Henke, Bernd Krieg-Briickner, and Olaf Owe.
ANNA - A Language for Annotating Ada Programs, volume 260 of Lecture
Notes in Computer Science. Springer-Verlag, New York, N.Y., 1987.

[Meyer92al
Bertrand Meyer. Applying “design by contract”. Computer, 25(10):40-51,
October 1992.

[Meyer92b]
Bertrand Meyer. FEiffel: The Language. Object-Oriented Series. Prentice Hall,
New York, N.Y., 1992.

[Meyer97] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New
York, N.Y., second edition, 1997.

[Morgan94]
Carroll Morgan. Programming from Specifications: Second Edition. Prentice
Hall International, Hempstead, UK, 1994.

Bibliography 71

[Morgan-Vickers94]
Carroll Morgan and Trevor Vickers, editors. On the refinement calculus. Formal
approaches of computing and information technology series. Springer-Verlag,
New York, N.Y., 1994.

[Morris87] Joseph M. Morris. A theoretical basis for stepwise refinement and the program-
ming calculus. Science of Computer Programming, 9(3):287-306, December
1987.

[Mueller02]
Peter Miiller. Modular Specification and Verification of Object-Oriented Pro-
grams. Volume 2262 of Lecture Notes in Computer Science, Springer-Verlag,
2002.

[Nielson-Nielson-Amtoft97]
H. R. Nielson, F. Nielson, and T. Amtoft. Polymorphic subtyping for ef-
fect analysis: The static semantics. In M. Dam, editor, Proceedings of the
Fifth LOMAPS Workshop, number 1192 in Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1997.

[Ogden-etal94]
William F. Ogden, Murali Sitaraman, Bruce W. Weide, and Stuart H. Zweben.
Part I: The RESOLVE framework and discipline — a research synopsis. ACM
SIGSOF'T Software Engineering Notes, 19(4):23-28, Oct 1994.

[Owre-etal95]
Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107-125, February 1995.

[Poll-Jacobs00]
E. Poll and B.P.F. Jacobs. A Logic for the Java Modeling Language JML.
Computing Science Institute Nijmegen, Technical Report CSI-R0018. Catholic
University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, November 2000.

[Poetzsch-Heffter97]
Arnd Poetzsch-Heffter. Specification and verification of object-oriented pro-
grams. Habilitation thesis, Technical University of Munich, January 1997.

[Raghavan-Leavens05]
Arun D. Raghavan and Gary T. Leavens. Desugaring JML Method Specifica-
tions. Technical Report 00-03e, Department of Computer Science, lowa State
University, Ames, lowa, 50011, revised May 2005. Available in
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR0O0-03/TR.ps.gz .

[Rosenblum95]
David S. Rosenblum. A practical approach to programming with assertions.
IEEE Transactions on Software Engineering, 21(1):19-31, January 1995.

[Ruby-Leavens00]
Clyde Ruby and Gary T. Leavens. Safely Creating Correct Subclasses without
Seeing Superclass Code. In OOPSLA 2000 Conference on Object-Oriented

Bibliography 72

Programming, Systems, Languages, and Applications, Minneapolis, Minnesota,
pp- 208-228. Volume 35, number 10 of ACM SIGPLAN Notices, October,
2000. Also technical report 00-05d, Department of Computer Science, lowa
State University, Ames, lowa, 50011. April 2000, revised April, June, July
2000. Available in
‘ftp://ftp.cs.iastate.edu/pub/techreports/TR0O0-05/TR.ps.gz .

[Salcianu-Rinard05]

Alexandru Salcianu and Martin Rinard. Purity and Side Effect Analysis for
Java Programs. In Proceedings of the 6th International Conference on Veri-
fication, Model Checking and Abstract Interpretation. Paris, France January
2005. Available in
‘http://www.mit.edu/"salcianu/publications/vmcaiO5-purity.pdf’

[Sivaprasad95]

[Spivey92]

Gowri Sivaprasad. Larch/CORBA: Specifying the behavior of CORBA-IDL
interfaces. Technical Report 95-27a, Department of Computer Science, lowa
State University, Ames, lowa, 50011, December 1995.

J. Michael Spivey. The Z Notation: A Reference Manual. International Series
in Computer Science. Prentice-Hall, New York, N.Y., second edition, 1992.

[Talpin-Jouvelot94]

[Tan94]

[Tan95]

Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Infor-
mation and Computation, 111(2):245-296, June 1994.

Yang Meng Tan. Interface language for supporting programming styles. ACM
SIGPLAN Notices, 29(8):74-83, August 1994. Proceedings of the Workshop on
Interface Definition Languages.

Yang Meng Tan. Formal Specification Techniques for Engineering Modular C
Programs, volume 1 of Kluwer International Series in Software Engineering.
Kluwer Academic Publishers, Boston, 1995.

[Wahls-Leavens-Baker00]

[Watt91]

Tim Wahls, Gary T. Leavens, and Albert L. Baker. Executing Formal Specifi-
cations with Concurrent Constraint Programming. Automated Software Engi-
neering, 7(4):315-343, December, 2000.

David A. Watt. Programming Language Syntax and Semantics. Prentice Hall
International Series in Computer Science. Prentice-Hall, New York, N.Y., 1991.

[Whitehead-Russell25]

[Wills94]

[Wing87]

A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge Univer-
sity Press, London, second edition. edition, 1925.

Alan Wills. Refinement in Fresco. In Lano and Houghton [Lano-Haughton94],
chapter 9, pages 184-201.

Jeannette M. Wing. Writing Larch interface language specifications. ACM
Transactions on Programming Languages and Systems, 9(1):1-24, January
1987.

Bibliography 73

[Wing90a] Jeannette M. Wing. A specifier’s introduction to formal methods. Computer,
23(9):8-24, September 1990.

[Wing83] Jeannette Marie Wing. A two-tiered approach to specifying programs. Tech-
nical Report TR-299, Massachusetts Institute of Technology, Laboratory for
Computer Science, 1983.

[Woodcock-Davies96]
Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.
Prentice Hall, International Series in Computer Science, 1996.

[Wright92] Andrew K. Wright. Typing references by effect inference. In Bernd Krieg-
Bruckner, editor, ESOP ’92, 4th FEuropean Symposium on Programming,
Rennes, France, February 1992, Proceedings, volume 582 of Lecture Notes in
Computer Science, pages 473-491. Springer-Verlag, New York, N.Y., 1992.

Example Index

Example Index

A

Account.jml 42
ArcType.jml il 45

B

BoundedStackInterface.java................. 22
BoundedStackInterface.jml 26
BoundedStackInterface.refines-java........ 27
BoundedThing.java............................ 19

D

Digraph.jmlt 46

I

IntMathOps.java.............................. 1
IntMathOps2.java..............oooi.. 5
IntMathOps2. jml-refined...................... 4
IntMathOps3.java.......ccovviiiiiiiinnnnnnan.. 6
IntMathOps4.java....................oi. 3
18Tt oo 1

74
JMLType.java ..o 34
Money.java.......................L 32
MoneyAC.javao.oiiiiiiiiiiiiii . 39
MoneyComparable.java...............ooouunnn. 36
MoneyComparableAC.java..........coovvuunnnn. 40
MoneyOps.java.............oooiiiii... 37
NodeType. javauuuuunneeiiieieaiaeeennn 44
PlusAccount.jml............. 50
Point2D.java........... ... 17

U

UnboundedStack.java.....................o... 12
USMONEY . JAVA « e 41

Concept Index

Concept Index

!

1=, for booleansl 55
(K e 35, 55
*

K 35, 55
*, 0N arTay Tange..........oovuiiiiiiii i 59
+

++, prohibited in assertions 55
+=, prohibited in assertions 55
--, prohibited in assertions 55
-=, prohibited in assertions 55
-R option to jml script.........ol 9
... 59
fojaval. . 9
Javafileso 4
‘.java-refined’.............ol 9
CmL 4,9
‘ojml-refined’...........ol 4,9
Jml-refined fileso 4
‘.refines-java'............. ... il 9
“orefines—jml’ 9
‘.refines-spec’......... i 9
CBPeC . 4,9
‘.spec-refined’l 4,9
/*+@ vs. /*@ annotations........................ 5
J*Q 2
[2
[/ 2
’

5, in quantifiers......... . 56
<

o e 54

75
</GmML> L 3
</PTe></eSC> it 3
</pre></jml> ... 3
L 58
K== 55
oo 55
Com D 21, 55
KESC> ittt 3
SIMI> oo 3
KPLE><ESCD ..ttt 3
<pre><jml>. ... 3
=, prohibited in assertions 55
==, for booleans i 55
== to compare values...............couuiuoi.. 21
== vsequals ... 16
==, vs.equalS........ ..o i 16
S e e 55
@
O/ 2
@, in annotations Ll 21
{
0 36, 49
L 57
\
\elemtype.oooiiiiiiiiiii i 57
NeXISES ottt 56
NForall .ot e 56
Nfresh. ...t 57
NIDEO o 24
NIEX .« ottt 56
NIID .« o 56
\nonnullelements............c.oovvvieeena.... 57
\not_specified............... 62, 63
\nothing............... . o i 15
\DUM_Of . oot 57
NOLd ottt 7,16, 57
\old, pitfalls of i 16
\old, semantics of oL 16
\productl 56
NFeSULt. .ottt e 3, b7
\such_that..............ooiiiiiiiiiiii.. 54
NSUM .« .ot 56
\EYPe .o 58
\typeof 58

Concept Index

abstract data type, implementation of.......... 24
abstract data types.......... ... oot 12
abstract model o oL 19
abstract model, adding to...................... 22
abstract modeling classes 29
abstract models oo 12
abstraction function, see represents clause. 24
abstraction relation, see represents clause 24
abstraction relations.............. 54
acknowledgments, 60
adding, to abstract model...................... 22
adding, to method specification................ 21
adding, to supertype’s model 50
addition, quantified see \sum................... 56
ADT, correctness of implementation 39
ADT, implementation of 24
ADT, modeling...........cocoiiiiiiiiiii .. 44
ADT, specification of 12
allocation, vs. modification 14
AlSO0 .\ttt 21, 26, 34, 36, 46, 49
Amtoft ... 58
annotation markers............ oo 5
annotations il 1,4
annotations, in documentation comments 3
annotations, placement of 2
Arnold ..o 1
AITAY TATIZC . o oo v vvve ettt iie e e e e 59
ATTAY TAIZES « o oo oo e e iiaaas 59
array, specifying elements are non-null 57
ASSEIT .ttt 40
assertion checking oL 10
assertion, embedded o L 40
assertions, additions to Java expressions for.... 55
assertions, expressions in........................ 3
assertions, in Java vs. JML 40
assertions, Java expressions prohibited in 55
assertions, semantics of, 58
assign to, locations a method can.............. 15
assignable 14, 15, 16, 19, 24, 42
assignable clause........................ 14, 59
assignable clause, and constructors............. 42
assignable clause, and data groups............. 25
assignable clause, checks....................... 14
assignable clause, redundancy in............... 42
assignable clause, semantics of 14
assignable clauses, and data groups............ 24
assignable, default for............. 62
assignable_redundantly...................... 42
assignmento o i il 55
assignment, to model variables................. 15
ASSUIME oottt ettt e e e e 42

76
B
Back......ooooo i 7,8, 13,42
Baker......... . 1,7
Becker...... ... 60
behavior. oo 1
behavior, use in desugaring 26
behavior, vs. normal_behavior................ 21
behavior, when touse...............oooiin.. 22
behavioral interface specification language. 1
behavioral subtyping 49
benevolent side effect oL 15
Bhorkar 60
BISL .o 1
blank final, and constructor specifications...... 58
body of a quantifier............. 56
Borgidao 14
Boyland oo 60
Boysen.... ... 60
breaks, default for....................., 63
Blchi....oovvii 8, 60
C
case analysis, nested 36
case analysis, nested, example of 49
Chalin. ... 60
Chan. ..o 60
Chan Wai Ting..........ooooiiiiii i, 60
checkable redundancy.......................... 25
checker..... i 8
checker, for JML....... oo i i 9
Chen ... 60
CREOM . .ttt 60
Cheon, Yoonsik...........cooiiiiii i 10
class for modeling, example of 45
class specification..........o 12
class, model i 45
classes, pure, use of 42
clauses, multiple............................... 27
client, specification for.......................... 2
Clfton . ..o 60
Clome. .ot 21, 34
Cohen ... 56, 57
COK ot 60
collection model types................. 29
command for checking JML files 9
Compaq SRC ... 7,8
completely omitted specification 63
comprehensions, for sets....................... 57
conclusions il 60
concrete fields, relating to models.............. 19
CONCUITENCY & ot vvvvttieeeeee e, 60
constraint....... ..o 21
constructor, and preconditions................. 58
constructor, default, specification of............ 63
constructor, pure............. oo 30
constructors, and the assignable clause......... 42

container classes, in JML models directory 46

Concept Index

continues, default for......................... 63
CONBTaCt . ..ot 3
correct implementation 16
COTTECtNESS . ..o 16
correctness, of ADT implementation 39

D

da Costa Gomez..........cooviiiiiiii .. 60
Dai. .o 60
Daikon invariant detector....................... 8
data abstraction............... ... 25
data groupo i 24
data group membership........................ 24
data groups ...l 19
data groups, and assignable clause............. 25
data groups, and assignable clauses 24
data groups, and frame axioms................. 24
data groups, and inheritance................... 49
data groups, and modifies clauses.............. 24
data type induction............ oL 13
Daugherty........... 60
Davies. ... 7
debugging, specifications....................... 25
default constructor, specification of 63
default privacyo 6
default, for requires clause..................... 6
defaults, for omitted clauses in method
specifications. oo i 62
desugaring for spec_public and spec_protected
... 17
deterministic, pure method 31
Dhara ... 26, 49
Dietl .o 60
directory, argument to jml script................ 9
diverges............l 62
diverges, default for.......... 62
documentation comment, specification in........ 3
DOCKK . 60
Dooren.........o 60
downloading, JML........ 60
duration, default for................, 62
dynamic type of an expression................. 58
dynamic, assertion checking.................... 10

E

Edwards...... ... oo 60
Fiffel ... 7,14, 16
element type, see \elemtype 57
empty range........ ..o 56
EILSUTES . .ottt t ettt et e 2,16
ensures clause, meaning of multiple 27
ensures, default for 62
ensures, multiple....... il 5
ensures_redundantly......................... 29
equality, guidelines for comparing.............. 16

equals il 36

7
equals, VS. ==. 16
equivalence, see <==>........o 55
Ernst ... 8, 60
error, in Java virtual machine.................. 16
ESC/Javaoooviiiiiiiiiiiiiiin 5,7, 14, 42
ESC/Java, goals ..., 8
example 33
examples, checking, 33
examples, in method specifications............. 33
exceptional_behavior 21, 27
exceptional_behavior, desugaring............ 26
exceptional_example 33
exceptions, in expressions...................... 58
exceptions, prohibiting others.................. 22
exceptions, semantics of signals clauses....... 22
exceptions, specification of 21, 27
exceptions, specifying details of 27
existential quantifier, see \exists.............. 56
expressions, additions to Java.................. 55
expressions, in assertions........................ 3
exsures, see signals.................oiinnn... 21
F
field, private.......o i 50
fields of an object.........ol 59
fields, of an ADT 19
filename suffixes o L 9
files, for annotations 2
finiteness constraints.............. 16
Finney ... 7
Fitzgerald i 7
Fleck. ..o 60
for_examplecciiiiiiiii 33
formal parameters, and assignable clause....... 15
formality, escape from 35
frame axiom 15
frame axiom, see assignable clause 14
frame axioms, and data groups................. 24
fresh predicate.......... ool 57
future work. 60
G
Ganapathyc.o i 60
generalized quantifier................ 56
Gifford ... 58
goals, of JML ... i 1,6
Gosling........oo i 1
GIIeS . ettt 58
GUttag. ..o 3,7
H
Hayes ... 7
heavyweight specification 5
heavyweight specifications 62
helper ... 13

Concept Index

hiding concrete fields, in specifications 25
history constraint.............. oL 21
history constraint, and inheritance............. 49
history constraint, example of.................. 33
Hoare 3, 13, 25, 39
Hoech o 60
Holmes. ... 1
Horning....... 3,7
HTML documentation.......................... 9
Huisman.............. i 8, 60

hypertext, generation from JML specifications... 9

A 26
if and only if, see <==>.......... 55
iff, see <==> 55
immutable types, defining your own............ 29
implementation, correctness of 39
implication.......... ... i 29
implication, see ==>.. i 55
implications section, of method specification ... 26
implications, of a specification 25
implies_that il 26
implies_that, example of 36
T« PP 24
N Clause. ...t 24
in, example of o 39
inequivalence, see <=!=>....................... 55
informal descriptions 55
informal predicate, example of 42
informal predicates L 35
informality 35
information hiding.............. 25
inheritance o i 24
inheritance, of instance fields 22
inheritance, of method specifications........... 21
inheritance, of specifications 49
initialization, in constructors................... 42
initially.......oooiii 13
initially, and inheritance............. 49
instance ...l 20, 22
instance, history constraint 21
instance, invariant ... 20
interface specification 1, 12
interface, of amodule.............. 1
interface, pure.......... ... 44
invariant oo ool 13, 20
invariant checking 10
invariant, and inheritance.................. ... 49
invariant, example of oL 44
invariant, private oo 50
invariant, redundant.............. 25
invariant_redundantly....................... 25
Towa State University, Com S 362.............. 61
Towa State, release of JML...................... 8

Towa, University of 60

78

isAssignableFrom, method of java.lang.Class

... 58
ISO o 7
ISU, Com S 362cviiiii i 61
J
Jacobs 8, 60
Java. ... 1
‘java’ filename suffix oo ool 9
Java Modeling Language........................ 1
Java vs. JML assertions........................ 40
Java, additions to expressions.................. 55
Java, expressions prohibited in assertions 55
Java, failures in virtual machine 16
‘java-refined’ filename suffix 9
java.lang.Class, vs. \type() 58
javadoc ... 9
javadoc comments 3
IML 1
JML checker ... 8,9
‘jml’ filename suffix......... ... 9
Jmloscript ... 9
JML vs. Java assertions........................ 40
JML, downloading................ ... L 60
JML, web page . ..o 60
jml-junit scriptol 11
‘jml-refined’ filename suffix 9
jmlescript ... 10
jmldoc script........... oo 9
JMLObjectSet. ... o 57
jmlrac script......... ... o oo 10
jmlunit seript......... ... ool 10
JMLValueSet . ..o 46, 57
Jones ... 3,7
Jonkers. 3
Jouvelot.o 58
jtestscript............ii 11
JURIb .o 10
K
Kiniry. ... 60
L
Larch ... 7,8
Larch, differences from......................... 15
Larch/C++ ... 1,8
Larsen...... ..o 7
Lea. ..o 60
Leavens. 1, 7, 15, 21, 22, 25, 26, 35, 36, 42, 44,

49, 50
Leino................. 8, 14, 15, 24, 25, 39, 42, 60
lightweight specification............... 5
lightweight specifications................... 17, 62
Liskov. .o 21
local variables, and assignable clause........... 15

Concept Index

logic, undefinedness in......................... 58
logical equivalence, see <==>................... 55
logical implication, see ==>..................... 55
Loop oo 8
Lucassenooooi i 58
Luckham 1

M

MAPS ¢ ettt ettt et 24
maps-into clause..........o 24
Marche. ... 60
mathematical modeling 8
maximum, see \Max........c.oouuueeeennnnnee... 56
measured_by oo ool 49
measured_by, default for........... 62
Mertensoouuiiiii i 60
method specification 13, 21
method specification, addition to............... 21
method specification, multiple clauses in....... 27
method specification, omitted.................. 63
method specifications, defaults for clauses...... 62
method, pure......... L 29
method, result of oL 57
MeEYer . ..ovvii 3, 7,29
Mikhajlova.......o oo 42
Millstein 60
minimum, see \min............. 56
MIT . 8
model 13
model class....... ... o 45
model classes i 13, 29
model classes, vs. pure classes.................. 31
model declarationo oL 13
model field 13
model fields, from spec_protected............. 18
model fields, from spec_public................ 18
model fields, in interfaces...................... 20
model fields, inheritance of 22
model fields, relating to concrete............... 19
model import.....................L 13
model method, example of 37, 41
model methods, vs. pure methods.............. 31
model types 29
model types, for collections 29
model types, value vs. object 29
model variables, modification of................ 15
model, for a subtype.......... oL 50
model-based specification 8
modeling types, defining your own 29
modeling, for ADTs, example of 44
modifiable, see assignable................... 14
modification, of model variables................ 15
modified...... 14
modifies clause i 14
modifies clauses, and data groups.............. 24
modifies, see assignable 14

modify, locations a method can................ 15

79
module. 1
Morgan...........oo ool 3,7,8,13
Miller ..o 25, 60
multiple clauses 27
multiple specification cases..................... 26
multiple, exceptions oL 27
multiplication, quantified, see \product........ 56
Mylopoulos. ... 14
N
Namarao.oviinii i i 60
0= 14, 42
new {1} .o 57
new, and assertionsl 55
Nielson 58
Nijmegen, University of 7,8
non-null 13
non-null elements, of an array.................. 57
non_null.......... 63
nondeterminism in exception specifications. 28
normal termination............ 16
normal_behavior, 2, 16
normal_behavior, desugaring.................. 26
normal_example................. i 33
NSF 60
null, protection from.......................... 44
numerical quantifier, see \num_of 57
O
Ogdenooi 13
OLd . o 37
old values. ... 16, 57
Otes . ot 60
omitted clauses in method specifications 62
omitted privacy in specification 6
omitted specification, meaning of 63
omitted, assignable clause...................... 15
org. jmlspecs.models package............. 13, 29
overriding method, meaning of omitted
specification for.............. ... oL 63
overriding, and method specifications 21
overriding, specification of 34
P
partiality 58
pitfalls, in specifying exceptions................ 27
Poetzsch-Heffter.................... ... 16, 24, 60
Poll ... 60
Poll, Erik. ... 28
POSt, SEC enSUresS............oiiiiiiiiaiiii .. 2
post-state 14
postcondition........... 2
postcondition checking...................... ... 10
postcondition, multiple L 5
Potts. .o 60

Concept Index

Pre, SEe TeqUITeS. . o.ouuiiurtitt e, 2
pre-state ... 14
preconditionol i 2
precondition checking.......... L 10
preconditions, and constructors................ 58
predicates, additions to Java expressions for.... 55
predicates, Java expressions prohibited in...... 55
private...................iil 25
product, see \product 56
protection, from undefinedness................. 44
protection, in method specification............. 22
protection, of precondition..................... 36
prototyping from specifications.................. 7
public specification oL 2
public, omitted oL 6
publicly visible state........... L 13
PUTE . ottt 29, 63
pure class, example of L 45
pure classes, use in modeling................... 42
pure classes, vs. model classes.................. 31
pure constructor............. . . i il 30
pure interface..........o ool 31, 44
pure method o L. 8, 29
pure methods, vs. model methods.............. 31
pure model method, example of 37
pure, example of il 37
pure, implicit verification condition for termination
... 30
PUIItY . oo 58
purity, and determinism 31
Q
quantified addition, see \sum................... 56
quantified maximum, see \max 56
quantified minimum, see \min.................. 56
quantified multiplication, see \product......... 56
quantifier, body oo 56
quantifier, generalized 56
quantifier, range predicate in................... 56
quantifiers oo 7, 56

R

Raghavan, 21, 26, 60
range predicate, in quantifier................... 56
range predicate, not satisfiable................. 56
recursion, and pure methods................... 31
recursion, in model methods 49
redundancy ... 25, 33
redundancy, checking L. 25
redundancy, in assignable clause 42
redundant examples L. 33
redundant, ensures clauses..................... 29
redundantly, suffix on keywords............... 25
reference semantics................ooiii.L. 16
reference semantics, and equality............... 16
reference types oot 16

80
reference types, and equality tests.............. 16
refine....... .o 5, 26
refinement o 4
refinement calculus........................... 7,8
refines........ il 9
‘refines-java’ filename suffix 9
‘refines-jml’ filename suffix 9
‘refines-spec’ filename suffix 9
reflection in assertions......................... 58
Reiter..... .o 14
release, of JML o i 8
TEePreSentS.....ooviiiiiiiiiiiiii... 24
represents clause o 24, 54, 59
represents clause, and reasoning................ 25
represents, example ofo L 39
requires.......... ... il 2,6, 16
requires clauses, and constructors.............. 58
requires, default for............ 62
RESOLVE ... o 13
result, of a method 57
returns, default for 63
reverse implication, see <==.................... 55
rhetorical points.................... 25
Rinardo i 30
Rioux ... i 60
Rockwell International Corporation............ 60
Rodriguez i 60
Rosenblum oo 1
Ruby ... 15, 50
run-time assertion checking.................... 10
runtime assertion checking..................... 10
Russell ... i 57
Russell’s paradox ...t 57
S
Salcianu ... o i 30, 60
Sather. ... i 7
Sather-Ko 7
satisfaction, see correct implementation........ 16
SAKE 60
Scherbring. 60
Schneider.......... ... i 58
SEAGTEN ..ottt 60
semantics of signals clauses................... 22
set comprehension............. ... ool 57
Shilling. 60
side effects, freedom from in assertions......... 58
side-effects. ... i 7
signals........ooooiiiiiiiiiiiiiii. 21, 22, 27
signals clause......... ... i 27
signals clauses, detailed........................ 27
signals, default for............ 62
signals_only, default for...................... 62
simultaneous exceptions 28
‘spec’ filename suffix o ool 9
‘spec-refined’ filename suffix 9

spec_bigint_math........................... ... 5

Concept Index

spec_protected.......... ... 17
spec_protected, as a model field shorthand ... 18
spec_public L 17
spec_public, as a model field shorthand 18
specification case, nested....................... 36
specification cases ..., 46
specification cases, multiple.................... 26
specification of examples....................... 33
specification of exceptions.................. 21, 27
specification, completely omitted............... 63
specification, of methods....................... 21
specification, of overriding method 34
specification, of subtypes 50
specification-only declaration.................... 7
SDIVEY o ettt 7
Stata. ..o 60
static, history constraint................. 21
static, invariant............ 20
store-references, additions to Java for.......... 59
SUDtYPE. vt 21, 49
subtype relation........... ... 58
subtype, adding to supertype’s model.......... 50
subtype, specification.......................... 50
subtyping, behavioral, 49
suffixes, of filenames 9
summation, see \sum............ ... oL 56
super, prohibited in assertions................. 55
SUPETEYPE o oot 49
supertype, specification of 21

Talpin.... .o 58
Tan ... 1, 25, 60
temporary side effectsol 15
termination function, for methods.............. 49
termination, normal L 16
termination, of pure methods.................. 30
testdata ... 11
test oracle........ ... 10
textual copying, and inheritance 50
Thomas ... 60
tool support, for JML...... 8
type checking, of specifications.................. 9

type, correctness of implementation............ 39

81
typeof operator........... oo 58
types for mathematical modeling............... 29
types, comparing oo 58
types, marking in expressions.................. 58
U
undefinedness, in expressions................... 58
undefinedness, protection from 22, 36
unit testing, with JML.............. 10
universal quantifier, see \forall............... 56
University of lowa, 22C:181.................... 61
University of Nijmegen....................... 7,8
URL, for JML ...t 60
\Va
value, vs. object model types 29
vanden Berg....... ool 60
van Dooren. i 60
VDM-SL oo 7
Vermillard.......... ..o 60
Vickers. ... 7,8, 13
visibility, and inheritance................ 50
von Henke......o i 1
von Wright o .. 7,8, 13,42
Wahls......ooo 7, 60
web page, for JML............. . i 60
Weck .o 8, 60
when, default for........ 62
Whitehead oo 57
WIS « e 26
Wingl 1, 7, 8, 13, 21, 22, 26, 36, 44
Woodcock ... 7
working_space, default for 62
Wright ..o 58
Z
7, specification language 7
Zhou ... 24

	Introduction
	Behavioral Interface Specification
	Lightweight Specifications
	Goals
	Tool Support
	Type Checking Specifications
	Generating HTML Documentation
	Run Time Assertion Checking
	Unit Testing with JML

	Outline

	Class and Interface Specifications
	Abstract Models
	Model Fields
	Invariants
	Method Specifications
	The Assignable Clause
	Old Values
	Reference Semantics
	Correct Implementation

	Models and Lightweight Specifications

	Data Groups
	Specification of BoundedThing
	Model Fields in Interfaces
	Invariants and History Constraint
	Details of the Method Specifications
	Adding to Method Specifications
	Specifying Exceptional Behavior

	Specification of BoundedStackInterface
	Data Groups and Represents Clauses
	Redundant Specification
	Multiple Specification Cases
	Pitfalls in Specifying Exceptions
	Redundant Ensures Clauses

	Types For Modeling
	Purity
	Money
	Redundant Examples
	JMLType and Informal Predicates

	MoneyComparable and MoneyOps
	MoneyAC
	MoneyComparableAC
	USMoney

	Use of Pure Classes
	Composition for Container Classes
	NodeType
	ArcType
	Digraph

	Behavioral Subtyping

	Extensions to Java Expressions
	Extensions to Java Expressions for Predicates
	Extensions to Java Expressions for Store-Refs

	Conclusions
	Specification Case Defaults
	Bibliography
	Example Index
	Concept Index

