ROUTE

Section: Linux Programmer's Manual (8)

NAME

route - show / manipulate the IP routing table

SYNOPSIS

route [-CFvnee]

route

[-v] [-A family] add [-net|-host] target [netmask Nm] [gw Gw] [metric N] [mss M] [window W] [irtt I] [reject] [mod] [dyn] [reinstate] [[dev] If]

route

[-v] [-A family] del [-net|-host] target [gw Gw] [netmask Nm] [metric N] [[dev] If]

route

[-V] [--version] [-h] [--help]

DESCRIPTION

Route manipulates the kernel's IP routing tables. Its primary use is to set up static routes to specific hosts or networks via an interface after it has been configured with the **ifconfig**(8) program.

When the **add** or **del** options are used, **route** modifies the routing tables. Without these options, **route** displays the current contents of the routing tables.

OPTIONS

-A family

use the specified address family (eg `inet'; use `route --help' for a full list).

-F

operate on the kernel's FIB (Forwarding Information Base) routing table. This is the default.

-C

operate on the kernel's routing cache.

-V

select verbose operation.

-n

show numerical addresses instead of trying to determine symbolic host names. This is useful if you are trying to determine why the route to your nameserver has vanished.

-е

use <u>netstat(8)</u>-format for displaying the routing table. **-ee** will generate a very long line with all parameters from the routing table.

del

delete a route.

add

add a new route.

target

the destination network or host. You can provide IP addresses in dotted decimal or host/network names.

-net

the target is a network.

-host

the target is a host.

netmask NM

when adding a network route, the netmask to be used.

gw GW

route packets via a gateway. **NOTE:** The specified gateway must be reachable first. This usually means that you have to set up a static route to the gateway beforehand. If you specify the address of one of your local interfaces, it will be used to decide about the interface to which the packets should be routed to. This is a BSDism compatibility hack.

metric M

set the metric field in the routing table (used by routing daemons) to M.

mss M

set the TCP Maximum Segment Size (MSS) for connections over this route to M bytes. The default is the device MTU minus headers, or a lower MTU when path mtu discovery occurred. This setting can be used to force smaller TCP packets on the other end when path mtu discovery does not work (usually because of misconfigured firewalls that block

ICMP Fragmentation Needed)

window W

set the TCP window size for connections over this route to W bytes. This is typically only used on AX.25 networks and with drivers unable to handle back to back frames.

irtt l

set the initial round trip time (irtt) for TCP connections over this route to I milliseconds (1-12000). This is typically only used on AX.25 networks. If omitted the RFC 1122 default of 300ms is used.

reject

install a blocking route, which will force a route lookup to fail. This is for example used to mask out networks before using the default route. This is NOT for firewalling.

mod, dyn, reinstate

install a dynamic or modified route. These flags are for diagnostic purposes, and are generally only set by routing daemons.

dev If

force the route to be associated with the specified device, as the kernel will otherwise try to determine the device on its own (by checking already existing routes and device specifications, and where the route is added to). In most normal networks you won't need this.

If **dev If** is the last option on the command line, the word **dev** may be omitted, as it's the default. Otherwise the order of the route modifiers (metric - netmask - gw - dev) doesn't matter.

EXAMPLES

route add -net 127.0.0.0

adds the normal loopback entry, using netmask 255.0.0.0 (class A net, determined from the destination address) and associated with the "lo" device (assuming this device was previously set up correctly with **ifconfig**(8)).

route add -net 192.56.76.0 netmask 255.255.255.0 dev eth0

adds a route to the network 192.56.76.x via "eth0". The Class C netmask modifier is not really necessary here because 192.* is a Class C IP address. The word "dev" can be omitted here.

route add default gw mango-gw

adds a default route (which will be used if no other route matches). All packets using this route will be gatewayed through "mango-gw". The

device which will actually be used for that route depends on how we can reach "mango-gw" - the static route to "mango-gw" will have to be set up before.

route add ipx4 sl0

Adds the route to the "ipx4" host via the SLIP interface (assuming that "ipx4" is the SLIP host).

route add -net 192.57.66.0 netmask 255.255.255.0 gw ipx4

This command adds the net "192.57.66.x" to be gatewayed through the former route to the SLIP interface.

route add -net 224.0.0.0 netmask 240.0.0.0 dev eth0

This is an obscure one documented so people know how to do it. This sets all of the class D (multicast) IP routes to go via "eth0". This is the correct normal configuration line with a multicasting kernel.

route add -net 10.0.0.0 netmask 255.0.0.0 reject

This installs a rejecting route for the private network "10.x.x.x."

OUTPUT

The output of the kernel routing table is organized in the following columns

Destination

The destination network or destination host.

Gateway

The gateway address or '*' if none set.

Genmask

The netmask for the destination net; '255.255.255' for a host destination and '0.0.0.0' for the **default** route.

Flags

Possible flags include

U (route is **up**)

H (target is a **host**)

G (use gateway)

R (reinstate route for dynamic routing)

D (**dynamically** installed by daemon or redirect)

M (modified from routing daemon or redirect)

A (installed by addrconf)

C (cache entry)

! (reject route)

Metric

The 'distance' to the target (usually counted in hops). It is not used by recent kernels, but may be needed by routing daemons.

Ref

Number of references to this route. (Not used in the Linux kernel.)

Use

Count of lookups for the route. Depending on the use of -F and -C this will be either route cache misses (-F) or hits (-C).

Iface

Interface to which packets for this route will be sent.

MSS

Default maximum segment size for TCP connections over this route.

Window

Default window size for TCP connections over this route.

irtt

Initial RTT (Round Trip Time). The kernel uses this to guess about the best TCP protocol parameters without waiting on (possibly slow) answers.

HH (cached only)

The number of ARP entries and cached routes that refer to the hardware header cache for the cached route. This will be -1 if a hardware address is not needed for the interface of the cached route (e.g. lo).

Arp (cached only)

Whether or not the hardware address for the cached route is up to date.

FILES

/proc/net/ipv6_route /proc/net/route /proc/net/rt cache

SEE ALSO

ifconfig(8), netstat(8), arp(8), rarp(8)

HISTORY

Route for Linux was originally written by Fred N. van Kempen, <<u>waltje@uwalt.nl.mugnet.org</u>> and then modified by Johannes Stille and Linus Torvalds for pl15. Alan Cox added the mss and window options for Linux 1.1.22. irtt support and merged with netstat from Bernd Eckenfels.

AUTHOR

Currently maintained by Phil Blundell < Philip.Blundell@pobox.com>.